Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396841

ABSTRACT

The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanotubes, Carbon , Skin Neoplasms , Humans , Drug Delivery Systems/methods , Drug Carriers , Nanotechnology/methods , Nanoparticles/therapeutic use , Skin Neoplasms/drug therapy
2.
Sci Rep ; 13(1): 14044, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640757

ABSTRACT

The consequence of chronic kidney disease is the accumulation of metabolic products called uremic toxins in the body. Indoxyl sulfate (IS) is a toxin with a high affinity for proteins. This study focuses on the deleterious effect of IS, especially apoptosis induction, in mononuclear blood cells (MNCs). Thus, in MNCs treated with IS at three different concentrations for 24 h, the survival, mitochondrial potential, caspases activity and expression, Bcl-2 and Bax protein expression, DNA damage, and PARP degradation were estimated. The study showed a decrease in survival and mitochondrial potential of MNCs treated with IS compared to the control. IS increased the activity of caspase 2-, 3-, 9-, and the expression of caspase 3-, and 9- in MNCs but does not affect the activity of caspase 6- and 8. The treatment of MNCs with IS also increased DNA damage and degradation of PARP. Indoxyl sulfate significantly influences the expression of Bcl-2 and Bax proteins. Indoxyl sulfate induces the programmed death of MNCs through the intrinsic mitochondrial apoptotic pathway. The observed cellular changes are mostly dose-dependent.


Subject(s)
Indican , Poly(ADP-ribose) Polymerase Inhibitors , Indican/toxicity , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Blood Cells
3.
Biomedicines ; 11(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37371797

ABSTRACT

In this study, we investigated the properties of human varicose vein (VV) endothelial cells (HVVEC) in comparison to the human umbilical vein endothelial cells (HUVEC). The cells were treated with three bioactive compounds with proven beneficial effects in the therapy of patients with VV, diosmin, escin, and bromelain. Two concentrations of tested drugs were used (1, 10 mg/mL), which did not affect the viability of either cell type. Escin led to a slight generation of reactive oxygen species in HUVEC cells. We observed a slight release of superoxide in HVVEC cells upon treatment with diosmin and escin. Diosmin and bromelain showed a tendency to release nitric oxide in HUVEC. Using membrane fluorescent probes, we demonstrated a reduced fluidity of HVVEC, which may lead to their increased adhesion, and, consequently, a much more frequent occurrence of venous thrombosis. For the first time, we show the mechanism of action of drugs used in VV therapy on endothelial cells derived from a VV. Studies with HVVEC have shown that tested drugs may lead to a reduction in the adhesive properties of these cells, and thus to a lower risk of thrombosis.

4.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175377

ABSTRACT

Arene-ruthenium(II) complexes with carbothioamidopyrazoles at the C-2 and C-5 positions have been recognized as chemotherapeutic agent alternatives to cisplatin and its oxaliplatin analogs. The aim of this study was to continue research on the biological aspect of arene-ruthenium(II) complexes and their anticancer activity. The present paper includes an additional 12 new tumor cells, analyzed by MTT, and employs a series of extended bioassays to better understand their potential mechanism of antitumor activity. The following tests were conducted: membrane permeability studies, intramolecular reactive oxygen and nitrogen species (ROS/RNS) assays, mitochondrial potential changes, DNA analysis by comet assay using the electrophoresis method, measurement of cleaved PARP protein levels, and determination of apoptotic and necrotic cell fractions by fluorescence microscopy. Additionally, the article presents lipophilicity studies based on RP-TLC and molecular docking studies. We hope that the presented data will prove useful in practical treatment, especially for patients with cancer.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Ruthenium/pharmacology , Molecular Docking Simulation , Cisplatin , Reactive Oxygen Species/metabolism , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047550

ABSTRACT

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.


Subject(s)
Diabetes Mellitus , Digestive System Diseases , Animals , Humans , Aldehydes/metabolism , Acrolein/chemistry , Diet , Diabetes Mellitus/etiology
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166683, 2023 06.
Article in English | MEDLINE | ID: mdl-36878303

ABSTRACT

Among the numerous adhesion G protein-coupled receptors (GPCRs), adhesion G protein-coupled estrogen receptor F5 (ADGRF5) contains unique domains in the long N-terminal tail which can determine cell-cell and cell-matrix interaction as well as cell adhesion. Nevertheless, the biology of ADGRF5 is complex and still poorly explored. Accumulating evidence suggests that the ADGRF5 activity is fundamental in health and disease. For instance, ADGRF5 is essential in the proper function of lungs and kidney as well as the endocrine system, and its signification in vascularization and tumorigenesis has been demonstrated. The most recent studies have provided findings about the diagnostic potential of ADGRF5 in osteoporosis and cancers, and ongoing studies suggest other diseases as well. Here, we elaborate on the current state of knowledge about the ADGRF5 in the physiology and pathophysiology of human diseases and highlight its high potential as a novel target in various therapeutic areas.


Subject(s)
Clinical Relevance , Neoplasms , Humans , Cell Adhesion , Lung/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
7.
Cells ; 12(6)2023 03 11.
Article in English | MEDLINE | ID: mdl-36980220

ABSTRACT

Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer's disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke's most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.


Subject(s)
Electronic Nicotine Delivery Systems , Neoplasms , Pulmonary Disease, Chronic Obstructive , Tobacco Smoke Pollution , Humans , Acrolein/toxicity , Lung , Pulmonary Disease, Chronic Obstructive/etiology , Neoplasms/chemically induced
8.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682740

ABSTRACT

In this study, we evaluated the antiproliferative potential, DNA damage, crystal structures, and docking calculation of two spiropyrazoline derivatives. The main focus of the research was to evaluate the antiproliferative potential of synthesized compounds towards eight cancer cell lines. Compound I demonstrated promising antiproliferative properties, especially toward the HL60 cell line, for which IC50 was equal to 9.4 µM/L. The analysis of DNA damage by the comet assay showed that compound II caused DNA damage to tumor lineage cells to a greater extent than compound I. The level of damage to tumor cells of the HEC-1-A lineage was 23%. The determination of apoptotic and necrotic cell fractions by fluorescence microscopy indicated that cells treated with spiropyrazoline-based analogues were entering the early phase of programmed cell death. Compounds I and II depolarized the mitochondrial membranes of cancer cells. Furthermore, we performed simple docking calculations, which indicated that the obtained compounds are able to bind to the PARP1 active site, at least theoretically (the free energy of binding values for compound I and II were -9.7 and 8.7 kcal mol-1, respectively). In silico studies of the influence of the studied compounds on PARP1 were confirmed in vitro with the use of eight cancer cell lines. The degradation of the PARP1 enzyme was observed, with compound I characterized by a higher protein degradation activity.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
9.
Molecules ; 27(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35056783

ABSTRACT

To meet the demand for alternatives to commonly used antibiotics, this paper evaluates the antimicrobial potential of arene-ruthenium(II) complexes and their salts, which may be of value in antibacterial treatment. Their antimicrobial activity (MIC, MBC/MFC) was examined in vitro against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris and Candida albicans and compared with classic antibiotics used as therapeutics. Selected arene-ruthenium(II) complexes were found to have synergistic effects with oxacillin and vancomycin against staphylococci. Their bactericidal effect was found to be associated with cell lysis and the ability to cut microbial DNA. To confirm the safety of the tested arene-ruthenium(II) complexes in vivo, their cytotoxicity was also investigated against normal human foreskin fibroblasts (HFF-1). In addition, the antioxidant and thus pro-health potential of the compounds, i.e., their nonenzymatic antioxidant capacity (NEAC), was determined by two different methods: ferric-TPTZ complex and DPPH assay.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/drug effects , Hydrocarbons, Aromatic/pharmacology , Pyrazoles/pharmacology , Ruthenium Compounds/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Cell Survival/drug effects , Cells, Cultured , Drug Synergism , Fibroblasts/drug effects , Foreskin/cytology , Foreskin/drug effects , Free Radical Scavengers/pharmacology , Humans , Hydrocarbons, Aromatic/chemistry , Male , Oxacillin/pharmacology , Pyrazoles/chemistry , Ruthenium Compounds/chemistry , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Vancomycin/pharmacology
10.
Nutrients ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959865

ABSTRACT

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Bromelains/therapeutic use , COVID-19 Drug Treatment , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Neoplasms/drug therapy , Plant Proteins/therapeutic use , SARS-CoV-2 , Ananas/enzymology , Anti-Inflammatory Agents/chemistry , Anticoagulants/chemistry , Bromelains/chemistry , Cardiotonic Agents/chemistry , Fibrinolysis/drug effects , Humans , Plant Proteins/chemistry
11.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502426

ABSTRACT

Radiotherapy is among the most important methods for breast cancer treatment. However, this method's effectiveness is limited by radioresistance. The aim of this study was to investigate whether the stilbene derivatives piceid, resveratrol, and piceatannol have a radiosensitising effect on breast cancer cells (MCF-7). The conducted research enabled us to determine which of the tested compounds has the greatest potential in sensitising cells to ionising radiation (IR). Among the stilbene derivatives, resveratrol significantly increased the effect of IR. Resveratrol and IR used in combination had a higher cytotoxic effect on MCF-7 cells than using piceatannol, piceid, or radiation alone. This was due to a significant decrease in the activity of antioxidant enzymes, which resulted in the accumulation of formed reactive oxygen species (ROS). The effect of resveratrol and IR enhanced the expression of apoptotic genes, such as Bax, p53, and caspase 8, leading to apoptosis.


Subject(s)
Breast Neoplasms , Glucosides/pharmacology , Radiation Tolerance/drug effects , Radiation, Ionizing , Resveratrol , Stilbenes/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Female , Humans , MCF-7 Cells , Resveratrol/analogs & derivatives , Resveratrol/pharmacology
12.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443474

ABSTRACT

Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/chemistry , Ions/chemistry , Metals/chemistry , Phytochemicals/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Free Radicals/metabolism , Humans , Phytochemicals/chemistry , Plants/chemistry
13.
Cardiol Res Pract ; 2021: 5569961, 2021.
Article in English | MEDLINE | ID: mdl-34306747

ABSTRACT

The varicose vein results from the inefficient functioning of the valves in the lower limb veins, making the blood flow slow down and leading to blood stasis and hypoxia. This type of vein dysfunction might be a result of the development of oxidative stress. We compared oxidative stress markers in the plasma and erythrocytes obtained from peripheral veins and varicose veins in the same patients (glutathione, nonenzymatic antioxidant capacity (NEAC), catalase (CAT) and acetylcholinesterase (AChE) activity, thiols, thiobarbituric acid-reactive substance (TBARS), and protein carbonyls). We found a decrease in NEAC in the plasma obtained from the varicose veins compared to the peripheral veins. We detected a decrease in thiols in the plasma, hemolysate, and plasma membranes and increase in protein carbonyl compounds and TBARS levels in the varicose veins. These changes were accompanied by a decrease in CAT and AChE activity. For the first time, our results show changes in the plasma, erythrocyte membrane, and hemolysate protein properties in varicose vein blood in contrast to the plasma and erythrocytes in peripheral vein blood from the same patients. The increased oxidative stress accompanying varicose vein disease might result from the local inefficiency of the antioxidant defense system.

14.
Molecules ; 25(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244705

ABSTRACT

A series of 3-benzylidenechrmanones 1, 3, 5, 7, 9 and their spiropyrazoline analogues 2, 4, 6, 8, 10 were synthesized. X-ray analysis confirms that compounds 2 and 8 crystallize in a monoclinic system in P21/n space groups with one and three molecules in each asymmetric unit. The crystal lattice of the analyzed compounds is enhanced by hydrogen bonds. The primary aim of the study was to evaluate the anti-proliferative potential of 3-benzylidenechromanones and their spiropyrazoline analogues towards four cancer cell lines. Our results indicate that parent compounds 1 and 9 with a phenyl ring at C2 have lower cytotoxic activity against cancer cell lines than their spiropyrazolines analogues. Analysis of IC50 values showed that the compounds 3 and 7 exhibited higher cytotoxic activity against cancer cells, being more active than the reference compound (4-chromanone or quercetin). The results of this study indicate that the incorporation of a pyrazoline ring into the 3-arylideneflavanone results in an improvement of the compounds' activity and therefore it may be of use in the search of new anticancer agents. Further analysis allowed us to demonstrate the compounds to have a strong inhibitory effect on the cell cycle. For instance, compounds 2, 10 induced 60% of HL-60 cells to be arrested in G2/M phase. Using a DNA-cleavage protection assay we also demonstrated that tested compounds interact with DNA. All compounds at the concentrations corresponding to cytotoxic properties are not toxic towards red blood cells, and do not contribute to hemolysis of RBCs.


Subject(s)
Chromones/chemistry , Chromones/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Hemolysis/drug effects , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
15.
RSC Adv ; 9(55): 31943-31952, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530753

ABSTRACT

This paper describes the synthesis of new 6-aminoflavone (6AFl (3)) and 6-aminochromone (6AC (4)) complexes with Cu(ii) and Ru(ii) ions ([Cu(6AC)2Cl2] (3a), [Cu(6AFl)2Cl2] (4a), [Ru(p-cymene)(6AC)Cl2] (4b)) and comparison of their properties with the previously described 7-aminoflavone (7AFl (1)) and 7-amino-2-methylchromone (7A2MC (2)) analogues. The cytotoxic effect of all these complexes against two human leukaemia cell lines (HL-60 and NALM-6), melanoma WM-115 cells and COLO205 cells, is determined. The cytotoxicity of copper(ii) complexes, especially [Cu(6AFl)2Cl2] (3a) was higher than ruthenium(ii) complexes with the same ligands. Their cytotoxic potency was also stronger in comparison to the referential agents like cisplatin. The pro-oxidative properties were determined for the most active complexes and their ability to generate ROS (reactive oxygen species)/RNS (reactive nitrogen species) in cancer cells was confirmed. The type of ligand and the chemical structure of the tested complexes had an influence on the level of ROS/RNS generated in cancer cells. The redox properties of the copper complex compounds were evaluated by cyclic voltammetry, and compared with the data for Ru(ii) complexes. The reduction and oxidation processes of Ru(iii)/Ru(ii) and Cu(ii)/Cu(i) were described as quasi-reversible.

16.
Chem Res Toxicol ; 31(9): 869-875, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30110159

ABSTRACT

Indoxyl sulfate (IS) is a uremic toxin that has been associated with inflammation and oxidative stress as well as with the progression of chronic kidney disease (CKD). IS is a protein metabolite that is concentrated in the serum of CKD patients. IS is a well-known uremic toxin, but there are very few reports on the effect of IS on cells including mononuclear cells (MNCs). We hypothesized that a high concentration of IS in CKD patients may induce changes in redox balance in the in vitro cells exposed. In the present study, we investigated the effect of IS on free radical production, antioxidant capacity, and protein damage in the mononuclear blood cells. As already determined, the concentrations (0.2 or 1 mM) of IS used in this study do not affect the survival rate of MNCs. For both the concentrations of IS, there was an increase in superoxide and nitric oxide and a release of other reactive oxygen species (ROS) inside the cells, as measured using fluorescent probes. However, an increase in other ROS as indicated by H2DCF-DA was found only for 1 mM of IS. Moreover, a decrease in the non-enzymatic antioxidant capacity and an increase in the superoxide dismutase activity after incubation of the cells with IS were observed. Furthermore, we found an increase in the levels of carbonyl compounds and peroxides in the cells treated with both the concentrations of IS. The obtained results show that IS induces oxidative stress and a decrease in antioxidant defense in cells leading to lipid and protein damage.


Subject(s)
Antioxidants/metabolism , Free Radicals/chemistry , Indican/toxicity , Leukocytes, Mononuclear/drug effects , Catalase/metabolism , Free Radicals/metabolism , Glutathione/blood , Humans , Hydrogen Peroxide/blood , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase
17.
Molecules ; 20(11): 19699-718, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26528965

ABSTRACT

Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Chromones/pharmacology , Gold , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Gold/chemistry , Hemolysis/drug effects , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , X-Ray Diffraction
18.
Eur J Med Chem ; 81: 289-300, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24852276

ABSTRACT

The straightforward syntheses of four new ferrocenyl and dicobalt hexacarbonyl chromones are presented. The redox behavior of the novel metallo-chromones has been examined by cyclic voltammetry (CV), revealing a reversible behavior of the ferrocenyl groups, while the dicobalt hexacarbonyl derivatives show irreversible oxidation. The anticancer activity of the products has been evaluated against hepatocellular carcinoma (Hep G2), ER+ (MCF-7) and ER- (MDA-MB-231) breast adenocarcinoma, and leukemic (CCRF-CEM) human cancer cell lines. The mechanism of action for the most active complexes has been investigated and it seems to involve oxidative stress and apoptosis induction. Moreover, the results show that the investigated metallo-chromones generate damage to DNA and arrest the cell cycle in G2/M phase.


Subject(s)
Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , Chromones/chemistry , Cobalt/chemistry , Ferrous Compounds/chemistry , G2 Phase/drug effects , Organometallic Compounds/pharmacology , Oxidative Stress/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA/chemistry , DNA/metabolism , DNA Damage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Oncol Rep ; 29(5): 2065-71, 2013 May.
Article in English | MEDLINE | ID: mdl-23440293

ABSTRACT

There is a current need for novel therapeutic strategies for the treatment of chronic lymphocytic leukemia (CLL), a still incurable hematological cancer involving mainly deregulated apoptosis. The purpose of the present study was to determine ex vivo the effect of the synthetic statin, atorvastatin, a known cholesterol-lowering drug, on peripheral blood mononuclear cells obtained from CLL patients. Using flow cytometry, we investigated the viability and induction of apoptosis in leukemic cells exposed to statin by the Vybrant apoptosis assay kit #4, compared with untreated control cells. We also examined the expression levels of apoptosis-regulatory proteins (Mcl-1, Bcl-2 and Bax), as well as products of the expression/proteolysis of lamin B, poly(ADP-ribose) polymerase­1 (PARP­1) and p27Kip1 by western blot analysis. Moreover, the number of sub-G1 cells and DNA fragmentation in atorvastatin-treated leukemic cells were examined by flow cytometry and agarose gel electrophoresis, respectively. The obtained results indicated that CLL cells ex vivo were extremely sensitive to atorvastatin. The cytotoxic effect of this statin was caused by the induction of apoptosis in the leukemic cells. The induction of apoptosis in the drug-treated model cells was confirmed by the reduction or proteolysis of apoptotic markers, such as PARP-1, lamin B and p27Kip1, the increase in the number of sub-G1 cells and DNA ladder formation. During atorvastatin-triggered apoptosis, changes in the expression levels of mitochondrial outer membrane permeability regulatory proteins of the Bcl-2 family were also observed. Ex vivo promising data indicate the strong cytotoxic and pro-apoptotic potential of atorvastatin against leukemic cells, but not normal cells. The obtained data suggest that atorvastatin be considered as a therapeutic option for the treatment of CLL.


Subject(s)
Heptanoic Acids/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrroles/pharmacology , Aged , Aged, 80 and over , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Atorvastatin , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , DNA Fragmentation/drug effects , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , bcl-2-Associated X Protein/metabolism , Lamin B Receptor
20.
Cell Mol Biol Lett ; 17(4): 646-69, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23001513

ABSTRACT

PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Proto-Oncogene Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Cell Transformation, Neoplastic , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...