Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Zoolog Sci ; 37(4): 314-322, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32729709

ABSTRACT

Acoel flatworms are simple bilaterians that lack digestive lumens and coelomic cavities. Although they are a significant taxon for evaluating the evolution of metazoans, suitable species for biological experiments are not available in Japan. We recently focused on Praesagittifera naikaiensis, which inhabits the sandy shores of intertidal zones in the Seto Inland Sea in Japan, as a candidate for a representative acoel species to be used in experiments. However, reports on its distribution range remain limited. Here, we surveyed the habitats of P. naikaiensis on 108 beaches along the Seto Inland Sea. Praesagittifera naikaiensis is reported here from 37 sites (six previously known and 31 newly discovered sites) spread over a wide area of the Seto Inland Sea, from Awaji Island in Hyogo Prefecture to Fukuoka Prefecture (364 km direct distance). Based on the mitochondrial cytochrome oxidase subunit I (COI) gene haplotypes, we evaluated the genetic diversity of 145 individuals collected from 33 sites. Out of 42 COI haplotypes, 13 haplotypes were shared by multiple individuals. The most frequent haplotype was observed in 67 individuals collected from 31 sites. Eight other haplotypes were detected at geographically distant locations (maximum of 299 km direct distance). Multiple haplotypes were found at 32 sites. These results demonstrate that sufficient genetic flow exists among P. naikaiensis populations throughout the Seto Inland Sea. Molecular phylogenetic analysis of the COI haplotypes of P. naikaiensis revealed that all specimens were grouped into one clade. The genetic homogeneity of the animals in this area favors their use as an experimental animal.


Subject(s)
Animal Distribution , Phylogeny , Platyhelminths/genetics , Platyhelminths/physiology , Animals , Haplotypes , Japan , Oceans and Seas , Platyhelminths/anatomy & histology , Platyhelminths/classification , Species Specificity
2.
Curr Biol ; 29(11): 1818-1826.e6, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31104936

ABSTRACT

Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic [1, 2]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria [3-5], suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. The idea that the Nephrozoa hypothesis might be an artifact is prompted by the faster molecular evolutionary rate observed within the Acoelomorpha. Unequal rates of evolution are known to result in the systematic artifact of long branch attraction, which would be predicted to result in an attraction between long-branch acoelomorphs and the outgroup, pulling them toward the root [6]. Other biases inadequately accommodated by the models used can also have strong effects, exacerbated in the context of short internal branches and long terminal branches [7]. We have assembled a large and informative dataset to address this problem. Analyses designed to reduce or to emphasize misleading signals show the Nephrozoa hypothesis is supported under conditions expected to exacerbate errors, and the Xenambulacraria hypothesis is preferred in conditions designed to reduce errors. Our reanalyses of two other recently published datasets [1, 2] produce the same result. We conclude that the Xenacoelomorpha are simplified relatives of the Ambulacraria.


Subject(s)
Biological Evolution , Invertebrates/classification , Phylogeny , Animals , Chordata/classification , Echinodermata/classification , Invertebrates/anatomy & histology
3.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30953569

ABSTRACT

BACKGROUND: Acoels are primitive bilaterians with very simple soft bodies, in which many organs, including the gut, are not developed. They provide platforms for studying molecular and developmental mechanisms involved in the formation of the basic bilaterian body plan, whole-body regeneration, and symbiosis with photosynthetic microalgae. Because genomic information is essential for future research on acoel biology, we sequenced and assembled the nuclear genome of an acoel, Praesagittifera naikaiensis. FINDINGS: To avoid sequence contamination derived from symbiotic microalgae, DNA was extracted from embryos that were free of algae. More than 290x sequencing coverage was achieved using a combination of Illumina (paired-end and mate-pair libraries) and PacBio sequencing. RNA sequencing and Iso-Seq data from embryos, larvae, and adults were also obtained. First, a preliminary ∼17-kilobase pair (kb) mitochondrial genome was assembled, which was deleted from the nuclear sequence assembly. As a result, a draft nuclear genome assembly was ∼656 Mb in length, with a scaffold N50 of 117 kb and a contig N50 of 57 kb. Although ∼70% of the assembled sequences were likely composed of repetitive sequences that include DNA transposons and retrotransposons, the draft genome was estimated to contain 22,143 protein-coding genes, ∼99% of which were substantiated by corresponding transcripts. We could not find horizontally transferred microalgal genes in the acoel genome. Benchmarking Universal Single-Copy Orthologs analyses indicated that 77% of the conserved single-copy genes were complete. Pfam domain analyses provided a basic set of gene families for transcription factors and signaling molecules. CONCLUSIONS: Our present sequencing and assembly of the P. naikaiensis nuclear genome are comparable to those of other metazoan genomes, providing basic information for future studies of genic and genomic attributes of this animal group. Such studies may shed light on the origins and evolution of simple bilaterians.


Subject(s)
Genome, Helminth , Genomics , Platyhelminths/genetics , Animals , Computational Biology/methods , Gene Expression Profiling , Genome Size , Genome, Mitochondrial , Genomics/methods , Molecular Sequence Annotation , Phenotype , Platyhelminths/anatomy & histology , Repetitive Sequences, Nucleic Acid , Transcriptome , Web Browser
4.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26580012

ABSTRACT

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Subject(s)
Chordata, Nonvertebrate/genetics , Evolution, Molecular , Genome/genetics , Animals , Chordata, Nonvertebrate/classification , Conserved Sequence/genetics , Echinodermata/classification , Echinodermata/genetics , Multigene Family/genetics , Phylogeny , Signal Transduction , Synteny/genetics , Transforming Growth Factor beta
5.
Zoolog Sci ; 29(9): 559-67, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22943779

ABSTRACT

Waminoa litus is a zooxanthella-bearing acoel worm that infests corals. It is unique to Bilateria in that it transmits its algal symbionts vertically via eggs irrespective of the heterogeneity of the symbionts. It simultaneously harbors two dinoflagellate genera: Symbiodinium and Amphidinium. In this study, we examined the timing and vertical transmission pathway of algal symbionts in W. litus using light and electron microscopy. The oogenesis of the worm can be divided into three stages: stage I, in which the ovary is absent; stage II, the early vitellogenic zone containing immature oocytes formed in the ovary; and stage III, with both early and late vitellogenic zones in the body. In the early vitellogenic zone at stage II, oocytes are surrounded by accessory-follicle cells (AFCs). Both Symbiodinium and Amphidinium symbionts are not initially observed in the oocytes, but are observed in the AFCs. In the late vitellogenic zone at stage III, oocytes are enveloped by a complete sheath of AFCs; the algal symbionts are taken up by the late vitellogenic oocytes. These observations suggest that AFCs mediate the transfer of the algae from the parent to the oocytes. Ribotype analyses of the Symbiodinium symbionts revealed that they differ from those harbored by coral in the same experimental aquarium. These results indicate that W. litus has an active algal transport pathway and maintains a specific lineage of Symbiodinium via vertical transmission.


Subject(s)
Dinoflagellida , Platyhelminths/parasitology , Animals , Anthozoa/parasitology , DNA, Ribosomal/genetics , Dinoflagellida/genetics , Female , Oogenesis , Ovary/microbiology , Phylogeny , Symbiosis/physiology
6.
Mol Genet Genomics ; 285(3): 219-24, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21234602

ABSTRACT

To investigate the recent transposition activity of T2 family miniature inverted-repeat transposable elements (MITEs) in Xenopus tropicalis (Western clawed frog), we analyzed the intraspecific polymorphisms associated with MITE insertion in X. tropicalis for three subfamilies of the T2 family (T2-A1, T2-C, and T2-E). A high frequency of MITE-insertion polymorphisms was observed at the T2-A1 (50%) and T2-C insertion loci (60%), but none were noted at the T2-E insertion locus (0%). Analyses of the collected data indicated that members of the T2-A1 and T2-C subfamilies may be currently active in the host species. Identification of these active transpositions will help us in understanding the mechanisms underlying the long-term survival (over several tens of millions of years) of the T2-A1 and T2-C subfamilies.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Inverted Repeat Sequences/genetics , Polymorphism, Genetic/genetics , Xenopus/genetics , Animals , Base Sequence , DNA Primers/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...