Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1740, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36720965

ABSTRACT

The accuracy and quality of the landslide susceptibility map depend on the available landslide locations and the sampling strategy for absence data (non-landslide locations). In this study, we propose an objective method to determine the critical value for sampling absence data based on Mahalanobis distances (MD). We demonstrate this method on landslide susceptibility mapping of three subdistricts (Upazilas) of the Rangamati district, Bangladesh, and compare the results with the landslide susceptibility map produced based on the slope-based absence data sampling method. Using the 15 landslide causal factors, including slope, aspect, and plan curvature, we first determine the critical value of 23.69 based on the Chi-square distribution with 14 degrees of freedom. This critical value was then used to determine the sampling space for 261 random absence data. In comparison, we chose another set of the absence data based on a slope threshold of < 3°. The landslide susceptibility maps were then generated using the random forest model. The Receiver Operating Characteristic (ROC) curves and the Kappa index were used for accuracy assessment, while the Seed Cell Area Index (SCAI) was used for consistency assessment. The landslide susceptibility map produced using our proposed method has relatively high model fitting (0.87), prediction (0.85), and Kappa values (0.77). Even though the landslide susceptibility map produced by the slope-based sampling also has relatively high accuracy, the SCAI values suggest lower consistency. Furthermore, slope-based sampling is highly subjective; therefore, we recommend using MD -based absence data sampling for landslide susceptibility mapping.

2.
BMC Bioinformatics ; 23(1): 168, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35525975

ABSTRACT

BACKGROUND: Dimension reduction and variable selection play a critical role in the analysis of contemporary high-dimensional data. The semi-parametric multi-index model often serves as a reasonable model for analysis of such high-dimensional data. The sliced inverse regression (SIR) method, which can be formulated as a generalized eigenvalue decomposition problem, offers a model-free estimation approach for the indices in the semi-parametric multi-index model. Obtaining sparse estimates of the eigenvectors that constitute the basis matrix that is used to construct the indices is desirable to facilitate variable selection, which in turn facilitates interpretability and model parsimony. RESULTS: To this end, we propose a group-Dantzig selector type formulation that induces row-sparsity to the sliced inverse regression dimension reduction vectors. Extensive simulation studies are carried out to assess the performance of the proposed method, and compare it with other state of the art methods in the literature. CONCLUSION: The proposed method is shown to yield competitive estimation, prediction, and variable selection performance. Three real data applications, including a metabolomics depression study, are presented to demonstrate the method's effectiveness in practice.

3.
BMC Bioinformatics ; 21(1): 283, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32620072

ABSTRACT

BACKGROUND: The problem of assessing associations between multiple omics data including genomics and metabolomics data to identify biomarkers potentially predictive of complex diseases has garnered considerable research interest nowadays. A popular epidemiology approach is to consider an association of each of the predictors with each of the response using a univariate linear regression model, and to select predictors that meet a priori specified significance level. Although this approach is simple and intuitive, it tends to require larger sample size which is costly. It also assumes variables for each data type are independent, and thus ignores correlations that exist between variables both within each data type and across the data types. RESULTS: We consider a multivariate linear regression model that relates multiple predictors with multiple responses, and to identify multiple relevant predictors that are simultaneously associated with the responses. We assume the coefficient matrix of the responses on the predictors is both row-sparse and of low-rank, and propose a group Dantzig type formulation to estimate the coefficient matrix. CONCLUSION: Extensive simulations demonstrate the competitive performance of our proposed method when compared to existing methods in terms of estimation, prediction, and variable selection. We use the proposed method to integrate genomics and metabolomics data to identify genetic variants that are potentially predictive of atherosclerosis cardiovascular disease (ASCVD) beyond well-established risk factors. Our analysis shows some genetic variants that increase prediction of ASCVD beyond some well-established factors of ASCVD, and also suggest a potential utility of the identified genetic variants in explaining possible association between certain metabolites and ASCVD.


Subject(s)
Genomics/methods , Metabolomics/methods , Atherosclerosis/genetics , Genetic Variation , Humans , Linear Models , Multivariate Analysis
4.
J Meas Phys Behav ; 3(3): 219-227, 2020 Sep.
Article in English | MEDLINE | ID: mdl-34258524

ABSTRACT

Bout detection algorithms are used to segment data from wearable sensors, but it is challenging to assess segmentation correctness. PURPOSE: To present and demonstrate the Transition Pairing Method (TPM), a new method for evaluating the performance of bout detection algorithms. METHODS: The TPM compares predicted transitions to a criterion measure in terms of number and timing. A true positive is defined as a predicted transition that corresponds with one criterion transition in a mutually exclusive pair. The pairs are established using an extended Gale-Shapley algorithm, and the user specifies a maximum allowable within-pair time lag, above which pairs cannot be formed. Unpaired predictions and criteria are false positives and false negatives, respectively. The demonstration used raw acceleration data from 88 youth who wore ActiGraph GT9X monitors (right hip and non-dominant wrist) during simulated free-living. Youth Sojourn bout detection algorithms were applied (one for each attachment site), and the TPM was used to compare predicted bout transitions to the criterion measure (direct observation). Performance metrics were calculated for each participant, and hip-versus-wrist means were compared using paired T-tests (α = 0.05). RESULTS: When the maximum allowable lag was 1-s, both algorithms had recall <20% (2.4% difference from one another, p<0.01) and precision <10% (1.4% difference from one another, p<0.001). That is, >80% of criterion transitions were undetected, and >90% of predicted transitions were false positives. CONCLUSION: The TPM improves on conventional analyses by providing specific information about bout detection in a standardized way that applies to any bout detection algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...