Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145892

ABSTRACT

Additive manufacturing has a wide range of applications and has opened up new methods of drug formulation, in turn achieving attention in medicine. We prepared styrene-isobutylene-styrene triblock copolymers (SIBS; Mn = 10 kDa-25 kDa, PDI 1,3-1,6) as a drug carrier for triamcinolone acetonide (TA), further processed by fused deposition modeling to create a solid drug release system displaying improved bioavailability and applicability. Living carbocationic polymerization was used to exert control over block length and polymeric architecture. Thermorheological properties of the SIBS polymer (22.3 kDa, 38 wt % S) were adjusted to the printability of SIBS/TA mixtures (1-5% of TA), generating an effective release system effective for more than 60 days. Continuous drug release and morphological investigations were conducted to probe the influence of the 3D printing process on the drug release, enabling 3D printing as a formulation method for a slow-release system of Triamcinolone.

2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884482

ABSTRACT

Carbonyl-centered hydrogen bonds with various strength and geometries are often exploited in materials to embed dynamic and adaptive properties, with the use of thiocarbonyl groups as hydrogen-bonding acceptors remaining only scarcely investigated. We herein report a comparative study of C2=O and C2=S barbiturates in view of their differing hydrogen bonds, using the 5,5-disubstituted barbiturate B and the thiobarbiturate TB as model compounds. Owing to the different hydrogen-bonding strength and geometries of C2=O vs. C2=S, we postulate the formation of different hydrogen-bonding patterns in C2=S in comparison to the C2=O in conventional barbiturates. To study differences in their association in solution, we conducted concentration- and temperature-dependent NMR experiments to compare their association constants, Gibbs free energy of association ∆Gassn., and the coalescence behavior of the N-H‧‧‧S=C bonded assemblies. In Langmuir films, the introduction of C2=S suppressed 2D crystallization when comparing B and TB using Brewster angle microscopy, also revealing a significant deviation in morphology. When embedded into a hydrophobic polymer such as polyisobutylene, a largely different rheological behavior was observed for the barbiturate-bearing PB compared to the thiobarbiturate-bearing PTB polymers, indicative of a stronger hydrogen bonding in the thioanalogue PTB. We therefore prove that H-bonds, when affixed to a polymer, here the thiobarbiturate moieties in PTB, can reinforce the nonpolar PIB matrix even better, thus indicating the formation of stronger H-bonds among the thiobarbiturates in polymers in contrast to the effects observed in solution.


Subject(s)
Barbiturates/chemistry , Polymers/chemistry , Thiobarbiturates/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Temperature
3.
Macromol Rapid Commun ; 40(24): e1900467, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31778270

ABSTRACT

3D printing of linear and three-arm star supramolecular polymers with attached hydrogen bonds and their nanocomposites is reported. The concept is based on hydrogen-bonded supramolecular polymers, known to form nano-sized micellar clusters. Printability is based on reversible thermal- and shear-induced dissociation of a supramolecular polymer network, which generates stable and self-supported structures after printing, as checked via melt-rheology and X-ray scattering. The linear and three-arm star poly(isobutylene)s PIB-B2 (Mn = 8500 g mol -1 ), PIB-B3 (Mn = 16 000 g mol -1 ), and linear poly(ethylene glycol)s PEG-B2 (Mn = 900 g mol-1 , 8500 g mol -1 ) are prepared and then probed by melt-rheology to adjust the viscosity to address the proper printing window. The supramolecular PIB polymers show a rubber-like behavior and are able to form self-supported 3D printed objects at room temperature and below, reaching polymer strand diameters down to 200-300 µm. Nanocomposites of PIB-B2 with silica nanoparticles (12 nm, 5-15 wt%) are generated, in turn leading to an improvement of their shape persistence. A blend of the linear polymer PIB-B2 and the three-arm star polymer PIB-B3 (ratio ≈ 3/1 mol) reaches an even higher structural stability, able to build free-standing structures.


Subject(s)
Nanoparticles/chemistry , Polymers/chemistry , Printing, Three-Dimensional , Macromolecular Substances/chemistry , Micelles , Models, Molecular , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...