Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2564: 143-183, 2023.
Article in English | MEDLINE | ID: mdl-36107341

ABSTRACT

Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.


Subject(s)
Dinitrocresols , Flavins , Flavins/metabolism , Oxygen/metabolism , Proteins
2.
Front Bioeng Biotechnol ; 10: 902059, 2022.
Article in English | MEDLINE | ID: mdl-36246361

ABSTRACT

Photocaged inducer molecules, especially photocaged isopropyl-ß-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes.

3.
Curr Opin Biotechnol ; 77: 102764, 2022 10.
Article in English | MEDLINE | ID: mdl-35932511

ABSTRACT

With more than 80 000 compounds, terpenoids represent one of the largest classes of secondary metabolites naturally produced by various plants and other organisms. Owing to the tremendous structural diversity, they offer a wide range of properties relevant for biotechnological and pharmaceutical applications. In this context, heterologous terpenoid production in engineered microbial hosts represents an often cost-effective and eco-friendly way to make these valuable compounds industrially available. This review provides an overview of current strategies to employ and engineer oxygenic and anoxygenic phototrophic bacteria as alternative cell factories for sustainable terpenoid production. Besides terpenoid pathway engineering, the effects of different illumination strategies on terpenoid photoproduction are key elements in the latest studies.


Subject(s)
Metabolic Engineering , Terpenes , Bacteria/metabolism , Plants/metabolism , Terpenes/metabolism
4.
Chembiochem ; 23(1): e202100467, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34750949

ABSTRACT

Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.


Subject(s)
Carbohydrates/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Carbohydrates/chemical synthesis , Photochemical Processes , Promoter Regions, Genetic/genetics
5.
Microb Cell Fact ; 20(1): 174, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488765

ABSTRACT

BACKGROUND: Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh ß-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS: As proof of concept, the GFP11-tag was fused C-terminally to the E. coli ß-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION: Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/biosynthesis , Recombinant Proteins/biosynthesis , Escherichia coli/genetics , Glucuronidase/biosynthesis
6.
J Biotechnol ; 338: 20-30, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34237394

ABSTRACT

Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene ß-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and ß-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.


Subject(s)
Rhodobacter capsulatus , Triterpenes , Mevalonic Acid , Rhodobacter capsulatus/genetics , Squalene , Terpenes
7.
ACS Synth Biol ; 10(6): 1308-1319, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34075749

ABSTRACT

Synthetic microbial cocultures carry enormous potential for applied biotechnology and are increasingly the subject of fundamental research. So far, most cocultures have been designed and characterized based on bulk cultivations without considering the potentially highly heterogeneous and diverse single-cell behavior. However, an in-depth understanding of cocultures including their interacting single cells is indispensable for the development of novel cultivation approaches and control of cocultures. We present the development, validation, and experimental characterization of an optochemically controllable bacterial coculture on a microcolony level consisting of two Corynebacterium glutamicum strains. Our coculture combines an l-lysine auxotrophic strain together with a l-lysine-producing variant carrying the genetically IPTG-mediated induction of l-lysine production. We implemented two control approaches utilizing IPTG as inducer molecule. First, unmodified IPTG was supplemented to the culture enabling a medium-based control of the production of l-lysine, which serves as the main interacting component. Second, optochemical control was successfully performed by utilizing photocaged IPTG activated by appropriate illumination. Both control strategies were validated studying cellular growth on a microcolony level. The novel microfluidic single-cell cultivation strategies applied in this work can serve as a blueprint to validate cellular control strategies of synthetic mono- and cocultures with single-cell resolution at defined environmental conditions.


Subject(s)
Cell Proliferation/radiation effects , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods , Microbial Interactions/radiation effects , Ultraviolet Rays , Biotechnology/methods , Cell Proliferation/genetics , Coculture Techniques/methods , Corynebacterium glutamicum/classification , Culture Media/chemistry , Fluorescence , Isopropyl Thiogalactoside/genetics , Isopropyl Thiogalactoside/metabolism , Lysine/biosynthesis , Microbial Interactions/genetics , Microfluidic Analytical Techniques/methods , Microorganisms, Genetically-Modified
8.
Microorganisms ; 9(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466643

ABSTRACT

Terpenoids constitute one of the largest and most diverse groups within the class of secondary metabolites, comprising over 80,000 compounds. They not only exhibit important functions in plant physiology but also have commercial potential in the biotechnological, pharmaceutical, and agricultural sectors due to their promising properties, including various bioactivities against pathogens, inflammations, and cancer. In this work, we therefore aimed to implement the plant sesquiterpenoid pathway leading to ß-caryophyllene in the heterologous host Rhodobacter capsulatus and achieved a maximum production of 139 ± 31 mg L-1 culture. As this sesquiterpene offers various beneficial anti-phytopathogenic activities, we evaluated the bioactivity of ß-caryophyllene and its oxygenated derivative ß-caryophyllene oxide against different phytopathogenic fungi. Here, both compounds significantly inhibited the growth of Sclerotinia sclerotiorum and Fusarium oxysporum by up to 40%, while growth of Alternaria brassicicola was only slightly affected, and Phoma lingam and Rhizoctonia solani were unaffected. At the same time, the compounds showed a promising low inhibitory profile for a variety of plant growth-promoting bacteria at suitable compound concentrations. Our observations thus give a first indication that ß-caryophyllene and ß-caryophyllene oxide are promising natural agents, which might be applicable for the management of certain plant pathogenic fungi in agricultural crop production.

9.
Chembiochem ; 22(3): 539-547, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32914927

ABSTRACT

Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non-invasive as well as easily tuneable. In the recent past, photo-responsive inducer molecules such as 6-nitropiperonyl-caged IPTG (NP-cIPTG) have been used as optochemical tools for Lac repressor-controlled microbial expression systems. To further expand the applicability of the versatile optochemical on-switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light-mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water-soluble cIPTG derivative proved to be particularly suitable for light-mediated gene expression in these alternative expression hosts.


Subject(s)
Bacillus subtilis/genetics , Lac Repressors/metabolism , Light , Pseudomonas putida/genetics , Thiogalactosides/metabolism , Bacillus subtilis/metabolism , Gene Expression Regulation, Bacterial/genetics , Lac Repressors/chemistry , Photochemical Processes , Pseudomonas putida/metabolism , Solubility , Thiogalactosides/chemistry
10.
Biomacromolecules ; 21(12): 5067-5076, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33140635

ABSTRACT

Azulitox as a new fusion polypeptide with cancer cell specificity and phototoxicity was generated and is composed of a photosensitizer domain and the cell-penetrating peptide P28. The photosensitizer domain (EcFbFP) was derived from a bacterial blue-light receptor, which belongs to the family of light-oxygen-voltage proteins and produces reactive oxygen species (ROS) upon excitation. P28 is derived from the cupredoxin protein azurin that is known to specifically penetrate cancer cells and bind to the tumor suppressor protein p53. We show that the P28 domain specifically directs and translocates the fused photosensitizer into cancer cells. Under blue-light illumination, Azulitox significantly induced cytotoxicity. Compared to the extracellular application of EcFbFP, Azulitox caused death to about 90% of cells, as monitored by flow cytometry, which also directly correlated with the amount of ROS produced in the cells. Azulitox may open new avenues toward targeted polypeptide-photosensitizer-based photodynamic therapies with reduced systemic toxicity compared to conventional photosensitizers.


Subject(s)
Antineoplastic Agents , Neoplasms , Photochemotherapy , Photosensitizing Agents , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Peptide Fragments/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Pseudomonas aeruginosa , Tumor Suppressor Protein p53
11.
Front Microbiol ; 11: 1655, 2020.
Article in English | MEDLINE | ID: mdl-32849341

ABSTRACT

Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. In particular, higher basidiomycetes possess a versatile biosynthetic repertoire for these bioactive compounds. To date, only a few microbial production systems for fungal sesquiterpenoids have been established. Here, we introduce Ustilago maydis as a novel production host. This model fungus is a close relative of higher basidiomycetes. It offers the advantage of metabolic compatibility and potential tolerance for substances toxic to other microorganisms. We successfully implemented a heterologous pathway to produce the carotenoid lycopene that served as a straightforward read-out for precursor pathway engineering. Overexpressing genes encoding enzymes of the mevalonate pathway resulted in increased lycopene levels. Verifying the subcellular localization of the relevant enzymes revealed that initial metabolic reactions might take place in peroxisomes: despite the absence of a canonical peroxisomal targeting sequence, acetyl-CoA C-acetyltransferase Aat1 localized to peroxisomes. By expressing the plant (+)-valencene synthase CnVS and the basidiomycete sesquiterpenoid synthase Cop6, we succeeded in producing (+)-valencene and α-cuprenene, respectively. Importantly, the fungal compound yielded about tenfold higher titers in comparison to the plant substance. This proof of principle demonstrates that U. maydis can serve as promising novel chassis for the production of terpenoids.

12.
Front Microbiol ; 10: 1998, 2019.
Article in English | MEDLINE | ID: mdl-31555236

ABSTRACT

Sesquiterpenoids are a large class of natural compounds offering manifold properties valuable for food, cosmetics, agriculture, and pharma industry. Production in microorganisms is a sustainable approach to provide sesquiterpenoids for research and industrial use independent of their natural sources. This requires the functional transfer of the respective biocatalytic pathways in an adequate host microorganism offering a sufficient supply of precursors that is ideally adjusted to the individual demand of the recombinant biosynthesis route. The phototrophic purple bacterium Rhodobacter capsulatus offers unique physiological properties that are favorable for biosynthesis of hydrophobic terpenes. Under phototrophic conditions, it develops a large intracytoplasmic membrane suitable for hosting membrane-bound enzymes and metabolites of respective biosynthetic pathways. In addition, Rhodobacter harbors an intrinsic carotenoid biosynthesis that can be engineered toward the production of foreign terpenes. Here, we evaluate R. capsulatus as host for the production of plant sesquiterpenoids under phototrophic conditions using patchoulol and valencene as a proof of concept. The heterologous expression of patchoulol synthase PcPS from Pogostemon cablin as well as the valencene synthases CsVS from Citrus sinensis and CnVS from Callitropsis nootkatensis led to the production of the respective sesquiterpenoids in R. capsulatus. To analyze, if gradually adjustable formation of the key precursor farnesylpyrophosphate (FPP) is beneficial for sesquiterpene synthesis under phototrophic conditions, the intrinsic 1-deoxy-D-xylulose 5-phosphate (DXP) pathway genes as well as the heterologous mevalonate pathway genes were modularly expressed in various combinations. To this end, different plasmids and chromosomally integrated expression tools were developed harboring the strong and tightly controlled P nif promoter for heterologous gene expression. Notably, comparative studies identified a distinct combination of precursor biosynthetic genes as best-performing setup for each of the tested sesquiterpene synthases. In summary, we could demonstrate that R. capsulatus is a promising alternative platform organism that is suited for sustainable sesquiterpenoid formation under phototrophic cultivation conditions. A modular engineering of R. capsulatus strains via tailored co-expression of FPP biosynthetic genes further allowed adaptation of sesquiterpene precursor formation to its catalytic conversion by different plant terpene synthases.

13.
Int J Mol Sci ; 20(18)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533368

ABSTRACT

Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•- and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.


Subject(s)
Anti-Infective Agents/pharmacology , Light , Photosensitizing Agents/pharmacology , Recombinant Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Biomarkers , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Reporter , Microfluidics/instrumentation , Microfluidics/methods
14.
Lab Chip ; 19(1): 98-110, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30488920

ABSTRACT

Interspecies interactions inside microbial communities bear a tremendous diversity of complex chemical processes that are by far not understood. Even for simplified, often synthetic systems, the interactions between two microbes are barely revealed in detail. Here, we present a microfluidic co-cultivation platform for the analysis of growth and interactions inside microbial consortia with single-cell resolution. Our device allows the spatial separation of two different microbial organisms inside adjacent microchambers facilitating sufficient exchange of metabolites via connecting nanochannels. Inside the cultivation chambers cell growth can be observed with high spatio-temporal resolution by live-cell imaging. In contrast to conventional approaches, in which single-cell activity is typically fully masked by the average bulk behavior, the small dimensions of the microfluidic cultivation chambers enable accurate environmental control and observation of cellular interactions with full spatio-temporal resolution. Our method enables one to study phenomena in microbial interactions, such as gene transfer or metabolic cross-feeding. We chose two different microbial model systems to demonstrate the wide applicability of the technology. First, we investigated commensalistic interactions between an industrially relevant l-lysine-producing Corynebacterium glutamicum strain and an l-lysine auxotrophic variant of the same species. Spatially separated co-cultivation of both strains resulted in growth of the auxotrophic strain due to secreted l-lysine supplied by the producer strain. As a second example we investigated bacterial conjugation between Escherichia coli S17-1 and Pseudomonas putida KT2440 cells. We could show that direct cell contact is essential for the successful gene transfer via conjugation and was hindered when cells were spatially separated. The presented device lays the foundation for further studies on contactless and contact-based interactions of natural and synthetic microbial communities.


Subject(s)
Cellular Microenvironment/physiology , Coculture Techniques/instrumentation , Microbial Interactions/physiology , Microfluidic Analytical Techniques/instrumentation , Bacteria/growth & development , Bacteria/metabolism , Coculture Techniques/methods , Equipment Design , Microfluidic Analytical Techniques/methods
15.
Sci Rep ; 8(1): 15021, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30301917

ABSTRACT

Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.


Subject(s)
Escherichia coli/metabolism , Flavoproteins/metabolism , Optogenetics , Photosensitizing Agents/pharmacology , Dinitrocresols/chemistry , Escherichia coli/pathogenicity , Escherichia coli/radiation effects , Flavoproteins/chemistry , Light , Photosensitivity Disorders , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Singlet Oxygen/metabolism , Superoxides/metabolism
16.
PLoS One ; 13(7): e0200940, 2018.
Article in English | MEDLINE | ID: mdl-30024935

ABSTRACT

Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 µg/mL prodigiosin and 32 µg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 µg/mL in the presence of 16 µg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Corynebacterium glutamicum/growth & development , Depsipeptides/pharmacology , Prodigiosin/pharmacology , Serratia marcescens/metabolism , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Corynebacterium glutamicum/drug effects , Disinfectants , Drug Combinations , Microbial Sensitivity Tests , Prodigiosin/biosynthesis , Serratia marcescens/growth & development
17.
PLoS One ; 11(8): e0160711, 2016.
Article in English | MEDLINE | ID: mdl-27525986

ABSTRACT

Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust triggering of bacterial gene expression in E. coli in a homogeneous fashion.


Subject(s)
Cell Culture Techniques/instrumentation , Escherichia coli/cytology , Escherichia coli/genetics , Genetic Engineering/instrumentation , Lab-On-A-Chip Devices , Single-Cell Analysis/instrumentation , Cell Proliferation , Gene Expression , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...