Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38842525

ABSTRACT

The proliferation marker Ki67 has been attributed critical functions in maintaining mitotic chromosome morphology and heterochromatin organization during the cell cycle, indicating a potential role in developmental processes requiring rigid cell-cycle control. Here, we discovered that despite normal fecundity and organogenesis, germline deficiency in Ki67 resulted in substantial defects specifically in peripheral B and T lymphocytes. This was not due to impaired cell proliferation but rather to early lymphopoiesis at specific stages where antigen-receptor gene rearrangements occurred. We identified that Ki67 was required for normal global chromatin accessibility involving regulatory regions of genes critical for checkpoint stages in B cell lymphopoiesis. In line with this, mRNA expression of Rag1 was diminished and gene rearrangement was less efficient in the absence of Ki67. Transgenes encoding productively rearranged immunoglobulin heavy and light chains complemented Ki67 deficiency, completely rescuing early B cell development. Collectively, these results identify a unique contribution from Ki67 to somatic antigen-receptor gene rearrangement during lymphopoiesis.


Subject(s)
B-Lymphocytes , Chromatin , Ki-67 Antigen , Ki-67 Antigen/metabolism , Animals , Chromatin/metabolism , Chromatin/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Lymphopoiesis/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Mice , Gene Rearrangement , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Mice, Inbred C57BL , Cell Proliferation/genetics
3.
Nat Immunol ; 24(7): 1124-1137, 2023 07.
Article in English | MEDLINE | ID: mdl-37217705

ABSTRACT

The magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (TFH) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. Here we show that TFH cell localization is critical for the quality of the antibody response and for the expansion of the FDC network upon immunization. The smaller GC and compressed FDC network in aged mice were corrected by provision of TFH cells that colocalize with FDCs using CXCR5. This demonstrates that the age-dependent defects in the GC response are reversible and shows that TFH cells support stromal cell responses to vaccines.


Subject(s)
T-Lymphocytes, Helper-Inducer , Vaccines , Animals , Mice , B-Lymphocytes , T Follicular Helper Cells , Germinal Center , Aging
4.
Immunity ; 56(7): 1596-1612.e4, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37164016

ABSTRACT

Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.


Subject(s)
Longevity , Plasma Cells , Antibody-Producing Cells
5.
Proc Natl Acad Sci U S A ; 120(2): e2213056120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595686

ABSTRACT

Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.


Subject(s)
Plasma Cells , SNARE Proteins , Mice , Animals , Plasma Cells/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Biological Transport
6.
Cell Rep ; 41(6): 111613, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351385

ABSTRACT

Influenza infection imparts an age-related increase in mortality and morbidity. The most effective countermeasure is vaccination; however, vaccines offer modest protection in older adults. To investigate how aging impacts the memory B cell response, we track hemagglutinin-specific B cells by indexed flow sorting and single-cell RNA sequencing (scRNA-seq) in 20 healthy adults that were administered the trivalent influenza vaccine. We demonstrate age-related skewing in the memory B cell compartment 6 weeks after vaccination, with younger adults developing hemagglutinin-specific memory B cells with an FcRL5+ "atypical" phenotype, showing evidence of somatic hypermutation and positive selection, which happened to a lesser extent in older persons. We use publicly available scRNA-seq from paired human lymph node and blood samples to corroborate that FcRL5+ atypical memory B cells can derive from germinal center (GC) precursors. Together, this study shows that the aged human GC reaction and memory B cell response following vaccination is defective.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Aged , Aged, 80 and over , Infant , Influenza, Human/prevention & control , Memory B Cells , Hemagglutinins , Antibodies, Viral , Vaccination
7.
Sci Immunol ; 7(76): eabm8389, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36306370

ABSTRACT

Vaccines work largely by generating long-lived plasma cells (LLPCs), but knowledge of how such cells are recruited is sparse. Although it is clear that LLPCs preferentially originate in germinal centers (GCs) and relocate to survival niches in bone marrow where they can persist for decades, the issues of the timing of LLPC recruitment and the basis of their retention remain uncertain. Here, using a genetic timestamping system in mice, we show that persistent PCs accrue in bone marrow at an approximately constant rate of one cell per hour over a period spanning several weeks after a single immunization with a model antigen. Affinity-based selection was evident in persisting PCs, reflecting a relative and dynamic rather than absolute affinity threshold as evidenced by the changing pattern of VH gene somatic mutations conveying increased affinity for antigen. We conclude that the life span of persistent, antigen-specific PCs is in part intrinsic, preprogrammed, and varied and that their final number is related to the duration of the response in a predictable way. This implies that modulating vaccines to extend the duration of the GC reaction will enhance antibody-mediated protective immunity.


Subject(s)
Bone Marrow , Plasma Cells , Animals , Mice , Germinal Center , Antibodies , Immunity
8.
Aging Cell ; 21(9): e13692, 2022 09.
Article in English | MEDLINE | ID: mdl-35980826

ABSTRACT

Vaccines typically protect against (re)infections by generating pathogen-neutralising antibodies. However, as we age, antibody-secreting cell formation and vaccine-induced antibody titres are reduced. Antibody-secreting plasma cells differentiate from B cells either early post-vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long-lived antibody-secreting cells. As the formation of both the extrafollicular antibody response and the GC requires the interaction of multiple cell types, the impaired antibody response in ageing could be caused by B cell intrinsic or extrinsic factors, or a combination of the two. Here, we show that B cells from older people do not have intrinsic defects in their proliferation and differentiation into antibody-secreting cells in vitro compared to those from the younger donors. However, adoptive transfer of B cells from aged mice to young recipient mice showed that differentiation into extrafollicular plasma cells was favoured at the expense of B cells entering the GC during the early stages of GC formation. In contrast, by the peak of the GC response, GC B cells derived from the donor cells of aged mice had expanded to the same extent as those from the younger donors. This indicates that age-related intrinsic B cell changes delay the GC response but are not responsible for the impaired antibody-secreting response or smaller peak GC response in ageing. Collectively, this study shows that B cells from aged individuals are not intrinsically defective in responding to stimulation and becoming antibody-secreting cells, implicating B cell-extrinsic factors as the primary cause of age-associated impairment in the humoral immunity.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibody Formation , Antibody-Producing Cells , Humans , Mice , Plasma Cells
9.
Immunity ; 55(8): 1414-1430.e5, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35896116

ABSTRACT

Germinal centers (GCs), transient structures within B cell follicles and central to affinity maturation, require the coordinated behavior of T and B cells. IL-21, a pleiotropic T cell-derived cytokine, is key to GC biology through incompletely understood mechanisms. By genetically restricting production and receipt of IL-21 in vivo, we reveal how its independent actions on T and B cells combine to regulate the GC. IL-21 established the magnitude of the GC B cell response by promoting CD4+ T cell expansion and differentiation in a dose-dependent manner and with paracrine activity. Within GC, IL-21 specifically promoted B cell centroblast identity and, when bioavailability was high, plasma cell differentiation. Critically, these actions may occur irrespective of cognate T-B interactions, making IL-21 a general promoter of growth as distinct to a mediator of affinity-driven selection via synaptic delivery. This promiscuous activity of IL-21 explains the consequences of IL-21 deficiency on antibody-based immunity.


Subject(s)
Immunological Synapses , T-Lymphocytes, Helper-Inducer , Cell Differentiation , Germinal Center , Interleukins
10.
Sci Immunol ; 7(71): eabk0018, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35522725

ABSTRACT

The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1+ stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1+ stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people.


Subject(s)
Aging , Germinal Center , Toll-Like Receptor 4 , Aged , Aging/immunology , Animals , Cell Adhesion Molecules , Humans , Mice , Stromal Cells , Vaccination
11.
Curr Opin Immunol ; 74: 112-117, 2022 02.
Article in English | MEDLINE | ID: mdl-34861545

ABSTRACT

T follicular helper (Tfh) cells are essential for the establishment, maintenance and output of the germinal centre (GC) response. The transient nature of this response, and its location within secondary lymphoid tissues have hampered our understanding of this critical cell type, particularly in humans. A counterpart of GC Tfh cells in peripheral blood has enabled recent discoveries in disease and vaccination settings, while direct sampling of lymph nodes provides exciting new avenues to study GC responses directly in vivo. Tfh differentiation is shaped by the cytokine milieu during inflammation, vaccination and with age, and disease-specific patterns are emerging. An improved understanding of how to support a Tfh response remains key to enhancing vaccine immunity across the lifespan.


Subject(s)
T Follicular Helper Cells , Vaccines , B-Lymphocytes , Germinal Center , Humans , Immunity, Humoral , T-Lymphocytes, Helper-Inducer , Vaccination
12.
Elife ; 102021 11 02.
Article in English | MEDLINE | ID: mdl-34726156

ABSTRACT

Antibody production following vaccination can provide protective immunity to subsequent infection by pathogens such as influenza viruses. However, circumstances where antibody formation is impaired after vaccination, such as in older people, require us to better understand the cellular and molecular mechanisms that underpin successful vaccination in order to improve vaccine design for at-risk groups. Here, by studying the breadth of anti-haemagglutinin (HA) IgG, serum cytokines, and B and T cell responses by flow cytometry before and after influenza vaccination, we show that formation of circulating T follicular helper (cTfh) cells was associated with high-titre antibody responses. Using Major Histocompatability Complex (MHC) class II tetramers, we demonstrate that HA-specific cTfh cells can derive from pre-existing memory CD4+ T cells and have a diverse T cell receptor (TCR) repertoire. In older people, the differentiation of HA-specific cells into cTfh cells was impaired. This age-dependent defect in cTfh cell formation was not due to a contraction of the TCR repertoire, but rather was linked with an increased inflammatory gene signature in cTfh cells. Together, this suggests that strategies that temporarily dampen inflammation at the time of vaccination may be a viable strategy to boost optimal antibody generation upon immunisation of older people.


Subject(s)
Antibody Formation , Hemagglutinins/metabolism , Inflammation/immunology , Influenza Vaccines/immunology , T Follicular Helper Cells/immunology , Vaccination , Humans
13.
Nat Commun ; 12(1): 3073, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031386

ABSTRACT

Follicular helper T (TFH) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate TFH function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying TFH regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human TFH differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs TFH generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of TFH cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure.


Subject(s)
Antibody Formation/immunology , Influenza Vaccines/immunology , Leptin/metabolism , Animals , Antibodies, Viral/immunology , Cell Differentiation , Female , Homeostasis , Humans , Immunization , Influenza, Human/prevention & control , Leptin/deficiency , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Vaccination/methods
14.
Sci Transl Med ; 12(529)2020 02 05.
Article in English | MEDLINE | ID: mdl-32024802

ABSTRACT

Children from low- and middle-income countries, where there is a high incidence of infectious disease, have the greatest need for the protection afforded by vaccination, but vaccines often show reduced efficacy in these populations. An improved understanding of how age, infection, nutrition, and genetics influence immune ontogeny and function is key to informing vaccine design for this at-risk population. We sought to identify factors that shape immune development in children under 5 years of age from Tanzania and Mozambique by detailed immunophenotyping of longitudinal blood samples collected during the RTS,S malaria vaccine phase 3 trial. In these cohorts, the composition of the immune system is dynamically transformed during the first years of life, and this was further influenced by geographical location, with some immune cell types showing an altered rate of development in Tanzanian children compared to Dutch children enrolled in the Generation R population-based cohort study. High-titer antibody responses to the RTS,S/AS01E vaccine were associated with an activated immune profile at the time of vaccination, including an increased frequency of antibody-secreting plasmablasts and follicular helper T cells. Anemic children had lower frequencies of recent thymic emigrant T cells, isotype-switched memory B cells, and plasmablasts; modulating iron bioavailability in vitro could recapitulate the B cell defects observed in anemic children. Our findings demonstrate that the composition of the immune system in children varies according to age, geographical location, and anemia status.


Subject(s)
Anemia , Malaria Vaccines , Malaria, Falciparum , Anemia/epidemiology , Antibodies, Protozoan , Child , Child, Preschool , Cohort Studies , Humans , Infant , Plasmodium falciparum
15.
J Exp Med ; 216(8): 1857-1873, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31175140

ABSTRACT

The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE-formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRß clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Drug Compounding/methods , Glucosides/pharmacology , Lipid A/pharmacology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/methods , Adolescent , Adult , Aged , Aged, 80 and over , Aluminum Hydroxide/pharmacology , Antibodies, Viral/drug effects , Antibodies, Viral/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , Cells, Cultured , Female , Germinal Center/immunology , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lymph Nodes/immunology , Malaria Vaccines/immunology , Male , Middle Aged , Plasmodium falciparum/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Young Adult
16.
Front Immunol ; 9: 1184, 2018.
Article in English | MEDLINE | ID: mdl-29904381

ABSTRACT

Background: T follicular helper (Tfh) cells are key players in the production of antibody-producing B cells via the germinal center reaction. Therapeutic strategies targeting Tfh cells are important where antibody formation is implicated in disease, such as transplant rejection and autoimmune diseases. We investigated the impact of the immunosuppressive agent tacrolimus on human Tfh cell differentiation and function in transplant recipients. Methods: Paired blood and lymph node (LN) samples were obtained from 61 transplant recipients immediately prior to organ implantation. Living-donor recipients received a week of tacrolimus prior to kidney transplantation. Deceased-donor recipients served as controls, as tacrolimus was not administered until after the transplant operation. Flow cytometry was used to compare LN and circulating cell subsets. Results: The calcineurin inhibitor (CNIs) tacrolimus specifically suppresses both LN Tfh cells and circulating Tfh cells, but not their regulatory counterparts or other CD4 T cell subsets. Conclusion: Our findings suggest that CNIs may have a more important role in the prevention of antibody formation than previously understood and, therefore, have potential for antibody-associated conditions in which aberrant Tfh function has been implicated in disease.


Subject(s)
Graft Rejection/immunology , Kidney Transplantation , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Antibody Formation , B-Lymphocytes , Calcineurin Inhibitors , Cell Differentiation , Cytokines/metabolism , Female , Germinal Center , Humans , Immunosuppressive Agents , Lymphocyte Activation , Male , Middle Aged , T-Lymphocytes, Helper-Inducer , Tacrolimus , Transplant Recipients
17.
Int J Parasitol ; 47(10-11): 585-595, 2017 09.
Article in English | MEDLINE | ID: mdl-28668325

ABSTRACT

Global eradication of the human-infecting malaria parasite Plasmodium falciparum, the major cause of malaria mortality, is unlikely to be achieved without an effective vaccine. However, our limited understanding of how protective immune responses target malaria parasites in humans, and how to best elicit these immune responses through vaccination, has hampered vaccine development. The red blood cell invading stage of the parasite lifecycle (merozoite) displays antigens that are attractive vaccine candidates as they are accessible to antibodies and raise high antibody titres in naturally immune individuals. The number of merozoite antigens that elicit an immune response, and their structural and functional diversity, has led to a large number of lead antigens being pursued as vaccine candidates. Despite being seemingly spoilt for choice in terms of vaccine candidates, there is still a lack of consensus on exactly how merozoite antibodies reduce parasitemia and malaria disease. In this review we describe the various immune mechanisms that can result from IgG opsonization of merozoites, and highlight recent developments that support a role for these functional antibodies in naturally acquired and vaccine-induced immunity.


Subject(s)
Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Merozoites/immunology , Antibodies, Protozoan/immunology , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum
18.
BMC Med ; 15(1): 114, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28615061

ABSTRACT

BACKGROUND: γδ T cells are important for both protective immunity and immunopathogenesis during malaria infection. However, the immunological processes determining beneficial or detrimental effects on disease outcome remain elusive. The aim of this study was to examine expression and regulatory effect of the inhibitory receptor T-cell immunoglobulin domain and mucin domain 3 (TIM3) on γδ T cells. While TIM3 expression and function on conventional αß T cells have been clearly defined, the equivalent characterization on γδ T cells and associations with disease outcomes is limited. This study investigated the functional capacity of TIM3+ γδ T cells and the underlying mechanisms contributing to TIM3 upregulation and established an association with malaria disease outcomes. METHODS: We analyzed TIM3 expression on γδ T cells in 132 children aged 5-10 years living in malaria endemic areas of Papua New Guinea. TIM3 upregulation and effector functions of TIM3+ γδ T cells were assessed following in vitro stimulation with parasite-infected erythrocytes, phosphoantigen and/or cytokines. Associations between the proportion of TIM3-expressing cells and the molecular force of infection were tested using negative binomial regression and in a Cox proportional hazards model for time to first clinical episode. Multivariable analyses to determine the association of TIM3 and IL-18 levels were conducted using general linear models. Malaria infection mouse models were utilized to experimentally investigate the relationship between repeated exposure and TIM3 upregulation. RESULTS: This study demonstrates that even in the absence of an active malaria infection, children of malaria endemic areas have an atypical population of TIM3-expressing γδ T cells (mean frequency TIM3+ of total γδ T cells 15.2% ± 12). Crucial factors required for γδ T cell TIM3 upregulation include IL-12/IL-18, and plasma IL-18 was associated with TIM3 expression (P = 0.002). Additionally, we show a relationship between TIM3 expression and infection with distinct parasite clones during repeated exposure. TIM3+ γδ T cells were functionally impaired and were associated with asymptomatic malaria infection (hazard ratio 0.54, P = 0.032). CONCLUSIONS: Collectively our data demonstrate a novel role for IL-12/IL-18 in shaping the innate immune response and provide fundamental insight into aspects of γδ T cell immunoregulation. Furthermore, we show that TIM3 represents an important γδ T cell regulatory component involved in minimizing malaria symptoms.


Subject(s)
Hepatitis A Virus Cellular Receptor 2/physiology , Interleukin-12/physiology , Interleukin-18/physiology , Malaria/immunology , T-Lymphocytes/immunology , Animals , Child , Child, Preschool , Cytokines , Erythrocytes , Humans , Interleukin-12/blood , Interleukin-18/blood , Mice , Papua New Guinea , Receptors, Antigen, T-Cell, gamma-delta , Risk
19.
Infect Immun ; 84(8): 2175-2184, 2016 08.
Article in English | MEDLINE | ID: mdl-27185785

ABSTRACT

It is unclear whether naturally acquired immunity to Plasmodium falciparum results from the acquisition of antibodies to multiple, diverse antigens or to fewer, highly conserved antigens. Moreover, the specific antibody functions required for malaria immunity are unknown, and hence informative immunological assays are urgently needed to address these knowledge gaps and guide vaccine development. In this study, we investigated whether merozoite-opsonizing antibodies are associated with protection from malaria in a strain-specific or strain-transcending manner by using a novel field isolate and an immune plasma-matched cohort from Papua New Guinea with our validated assay of merozoite phagocytosis. Highly correlated opsonization responses were observed across the 15 parasite strains tested, as were strong associations with protection (composite phagocytosis score across all strains in children uninfected at baseline: hazard ratio of 0.15, 95% confidence interval of 0.04 to 0.63). Opsonizing antibodies had a strong strain-transcending component, and the opsonization of transgenic parasites deficient for MSP3, MSP6, MSPDBL1, or P. falciparum MSP1-19 (PfMSP1-19) was similar to that of wild-type parasites. We have provided the first evidence that merozoite opsonization is predominantly strain transcending, and the highly consistent associations with protection against diverse parasite strains strongly supports the use of merozoite opsonization as a correlate of immunity for field studies and vaccine trials. These results demonstrate that conserved domains within merozoite antigens targeted by opsonization generate strain-transcending immune responses and represent promising vaccine candidates.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Merozoites/immunology , Opsonin Proteins/immunology , Plasmodium falciparum/immunology , Adolescent , Antibodies, Protozoan/blood , Child , Child, Preschool , Humans , Malaria, Falciparum/blood , Patient Outcome Assessment , Phagocytosis/immunology
20.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-26989476

ABSTRACT

The success of most vaccines relies on the generation of antibodies to provide protection against subsequent infection; this in turn depends on a robust germinal centre (GC) response that culminates in the production of long-lived antibody-secreting plasma cells. The size and quality of the GC response are directed by a specialised subset of CD4 (+) T cells: T follicular helper (Tfh) cells. Tfh cells provide growth and differentiation signals to GC B cells and mediate positive selection of high-affinity B cell clones in the GC, thereby determining which B cells exit the GC as plasma cells and memory B cells. Because of their central role in the production of long-lasting humoral immunity, Tfh cells represent an interesting target for rational vaccine design.

SELECTION OF CITATIONS
SEARCH DETAIL
...