Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 02 17.
Article in English | MEDLINE | ID: mdl-36851770

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelium-derived pro-inflammatory cytokine involved in lung inflammatory responses. Previous studies show conflicting observations in blood TSLP in COVID-19, while none report SARS-CoV-2 inducing TSLP expression in bronchial epithelial cells. Our objective in this study was to determine whether TSLP levels increase in COVID-19 patients and if SARS-CoV-2 induces TSLP expression in bronchial epithelial cells. Plasma cytokine levels were measured in patients hospitalized with confirmed COVID-19 and age- and sex-matched healthy controls. Demographic and clinical information from COVID-19 patients was collected. We determined associations between plasma TSLP and clinical parameters using Poisson regression. Cultured human nasal (HNEpC) and bronchial epithelial cells (NHBEs), Caco-2 cells, and patient-derived bronchial epithelial cells (HBECs) obtained from elective bronchoscopy were infected in vitro with SARS-CoV-2, and secretion as well as intracellular expression of TSLP was detected by immunofluorescence. Increased TSLP levels were detected in the plasma of hospitalized COVID-19 patients (603.4 ± 75.4 vs 997.6 ± 241.4 fg/mL, mean ± SEM), the levels of which correlated with duration of stay in hospital (ß: 0.11; 95% confidence interval (CI): 0.01-0.21). In cultured NHBE and HBECs but not HNEpCs or Caco-2 cells, TSLP levels were significantly elevated after 24 h post-infection with SARS-CoV-2 (p < 0.001) in a dose-dependent manner. Plasma TSLP in COVID-19 patients significantly correlated with duration of hospitalization, while SARS-CoV-2 induced TSLP secretion from bronchial epithelial cells in vitro. Based on our findings, TSLP may be considered an important therapeutic target for COVID-19 treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Thymic Stromal Lymphopoietin , Length of Stay , Caco-2 Cells , COVID-19 Drug Treatment , Cytokines
3.
Genet Med ; 23(5): 927-933, 2021 05.
Article in English | MEDLINE | ID: mdl-33500570

ABSTRACT

PURPOSE: Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis-related diabetes (CFRD). Untreated CFRD causes increased CF-related mortality whereas early detection can improve outcomes. METHODS: Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using the Canadian CF Gene Modifier Study (CGS; n = 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n = 1,003). We investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association studies. RESULTS: The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies. CONCLUSION: We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.


Subject(s)
Cystic Fibrosis , Diabetes Mellitus , Biomarkers , Canada , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Genome-Wide Association Study , Humans , Infant, Newborn
4.
Article in English | MEDLINE | ID: mdl-31168305

ABSTRACT

BACKGROUND: Asthma is a complex disease with variable course. Efforts to identify biomarkers to predict asthma severity, the course of disease and response to treatment have not been very successful so far. We have previous suggested that PAR-2 and CRTh2 expression on specific peripheral blood cell subtypes may be biomarkers of asthma severity. We reasoned that parameters that remain stable when asthma symptoms are controlled would be the most appropriate to evaluate for their utility to predict loss of asthma control and/or severity of the disease. METHODS: Nineteen stable asthmatics were recruited from the University of Alberta Asthma clinic and followed in clinic every 3 months for a total of 4 visits. Patients had spirometry and completed the ACQ questionnaire in every visit. Blood was drawn in every visit and analyzed for a number of immune parameters by flow cytometry. These parameters included PAR-2 and CRTh2 expression on monocyte subgroups and T lymphocytes respectively, as well as numbers of eosinophils, innate lymphoid type-2 cells (ILC2) and dendritic cells. Within person stability of immune and physiological parameters was calculated using the intraclass correlation (ICC) using R version 3.4.0. RESULTS: FEV1 (% predicted), FEV1/FVC ratio, ACQ5 and ACQ7 did not differ significantly over the 4 visits, as would be expected for patients with stable asthma. Peripheral blood eosinophil numbers by Kimura stain and by flow cytometry showed ICC scores of 0.44 and 0.52 respectively, indicating moderate stability. The % of ILC2 cells in peripheral blood also showed moderate stability [ICC score of 0.45 (0.14-0.67)]. The stability for all other immune parameters was poor. CONCLUSION: Among the peripheral blood immune parameters we studied, only numbers of eosinophils and ILC2 in peripheral blood were moderately stable over a year in stable asthmatics. Further studies are required to understand the reasons for the variability of the other cell types.

SELECTION OF CITATIONS
SEARCH DETAIL
...