Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
medRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961706

ABSTRACT

Mammalian cardiac muscle is supplied with blood by right and left coronary arteries that form branches covering both ventricles of the heart. Whether branches of the right or left coronary arteries wrap around to the inferior side of the left ventricle is variable in humans and termed right or left dominance. Coronary dominance is likely a heritable trait, but its genetic architecture has never been explored. Here, we present the first large-scale multi-ancestry genome-wide association study of dominance in 61,043 participants of the VA Million Veteran Program, including over 10,300 Africans and 4,400 Admixed Americans. Dominance was moderately heritable with ten loci reaching genome wide significance. The most significant mapped to the chemokine CXCL12 in both Europeans and Africans. Whole-organ imaging of human fetal hearts revealed that dominance is established during development in locations where CXCL12 is expressed. In mice, dominance involved the septal coronary artery, and its patterning was altered with Cxcl12 deficiency. Finally, we linked human dominance patterns with coronary artery disease through colocalization, genome-wide genetic correlation and Mendelian Randomization analyses. Together, our data supports CXCL12 as a primary determinant of coronary artery dominance in humans of diverse backgrounds and suggests that developmental patterning of arteries may influence one's susceptibility to ischemic heart disease.

2.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37770635

ABSTRACT

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Atherosclerosis/genetics , Black People/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Risk Factors , European People/genetics
4.
Nat Cardiovasc Res ; 2(12): 1159-1172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38817323

ABSTRACT

Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study (GWAS) of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification, and a potential drug target for vascular calcific disease.

5.
Genome Biol ; 23(1): 268, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575460

ABSTRACT

BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Sex Characteristics , Phenotype , Lipids/genetics , Polymorphism, Single Nucleotide , Genetic Pleiotropy
6.
Mol Psychiatry ; 27(10): 3961-3969, 2022 10.
Article in English | MEDLINE | ID: mdl-35986173

ABSTRACT

The association between coronary artery disease (CAD) and posttraumatic stress disorder (PTSD) contributes to the high morbidity and mortality observed for these conditions. To understand the dynamics underlying PTSD-CAD comorbidity, we investigated large-scale genome-wide association (GWA) statistics from the Million Veteran Program (MVP), the UK Biobank (UKB), the Psychiatric Genomics Consortium, and the CARDIoGRAMplusC4D Consortium. We observed a genetic correlation of CAD with PTSD case-control and quantitative outcomes, ranging from 0.18 to 0.32. To investigate possible cause-effect relationships underlying these genetic correlations, we performed a two-sample Mendelian randomization (MR) analysis, observing a significant bidirectional relationship between CAD and PTSD symptom severity. Genetically-determined PCL-17 (PTSD 17-item Checklist) total score was associated with increased CAD risk (odds ratio = 1.04; 95% confidence interval, 95% CI = 1.01-1.06). Conversely, CAD genetic liability was associated with reduced PCL-17 total score (beta = -0.42; 95% CI = -0.04 to -0.81). Because of these opposite-direction associations, we conducted a pleiotropic meta-analysis to investigate loci with concordant vs. discordant effects on PCL-17 and CAD, observing that concordant-effect loci were enriched for molecular pathways related to platelet amyloid precursor protein (beta = 1.53, p = 2.97 × 10-7) and astrocyte activation regulation (beta = 1.51, p = 2.48 × 10-6) while discordant-effect loci were enriched for biological processes related to lipid metabolism (e.g., triglyceride-rich lipoprotein particle clearance, beta = 2.32, p = 1.61 × 10-10). To follow up these results, we leveraged MVP and UKB electronic health records (EHR) to assess longitudinal changes in the association between CAD and posttraumatic stress severity. This EHR-based analysis highlighted that earlier CAD diagnosis is associated with increased PCL-total score later in life, while lower PCL total score was associated with increased risk of a later CAD diagnosis (Mann-Kendall trend test: MVP tau = 0.932, p < 2 × 10-16; UKB tau = 0.376, p = 0.005). In conclusion, both our genetically-informed analyses and our EHR-based follow-up investigation highlighted a bidirectional relationship between PTSD and CAD where multiple pleiotropic mechanisms are likely to be involved.


Subject(s)
Coronary Artery Disease , Stress Disorders, Post-Traumatic , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Genome-Wide Association Study/methods , Stress Disorders, Post-Traumatic/genetics , Polymorphism, Single Nucleotide , Electronic Health Records , Comorbidity , Risk Factors , Genetic Predisposition to Disease/genetics
7.
Nat Med ; 28(8): 1679-1692, 2022 08.
Article in English | MEDLINE | ID: mdl-35915156

ABSTRACT

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors
8.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931049

ABSTRACT

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Chromatin/genetics , Genomics , Humans , Lipids/genetics , Polymorphism, Single Nucleotide/genetics
10.
Circ Genom Precis Med ; 15(2): e003501, 2022 04.
Article in English | MEDLINE | ID: mdl-35143253

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) genetic variants confer risk for coronary artery disease independent of LDL-C (low-density lipoprotein cholesterol) when considering a single measurement. In real clinical settings, longitudinal LDL-C data are often available through the electronic health record. It is unknown whether genetic testing for FH variants provides additional risk-stratifying information once longitudinal LDL-C is considered. METHODS: We used the extensive electronic health record data available through the Million Veteran Program to conduct a nested case-control study. The primary outcome was coronary artery disease, derived from electronic health record codes for acute myocardial infarction and coronary revascularization. Incidence density sampling was used to match case/control exposure windows, defined by the date of the first LDL-C measurement to the date of the first coronary artery disease code of the index case. Adjustments for the first, maximum, or mean LDL-C were analyzed. FH variants in LDLR, APOB, and PCSK9 (Proprotein convertase subtilisin/kexin type 9) were assessed by custom genotype array. RESULTS: In a cohort of 23 091 predominantly prevalent cases at enrollment and 230 910 matched controls, FH variant carriers had an increased risk for coronary artery disease (odds ratio [OR], 1.53 [95% CI, 1.24-1.89]). Adjusting for mean LDL-C led to the greatest attenuation of the risk estimate, but significant risk remained (odds ratio, 1.33 [95% CI, 1.08-1.64]). The degree of attenuation was not affected by the number and the spread of LDL-C measures available. CONCLUSIONS: The risk associated with carrying an FH variant cannot be fully captured by the LDL-C data available in the electronic health record, even when considering multiple LDL-C measurements spanning more than a decade.


Subject(s)
Coronary Artery Disease , Hyperlipoproteinemia Type II , Case-Control Studies , Cholesterol, LDL , Coronary Artery Disease/epidemiology , Humans , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics
11.
Front Genet ; 12: 777076, 2021.
Article in English | MEDLINE | ID: mdl-35222515

ABSTRACT

SARS-CoV-2 has caused symptomatic COVID-19 and widespread death across the globe. We sought to determine genetic variants contributing to COVID-19 susceptibility and hospitalization in a large biobank linked to a national United States health system. We identified 19,168 (3.7%) lab-confirmed COVID-19 cases among Million Veteran Program participants between March 1, 2020, and February 2, 2021, including 11,778 Whites, 4,893 Blacks, and 2,497 Hispanics. A multi-population genome-wide association study (GWAS) for COVID-19 outcomes identified four independent genetic variants (rs8176719, rs73062389, rs60870724, and rs73910904) contributing to COVID-19 positivity, including one novel locus found exclusively among Hispanics. We replicated eight of nine previously reported genetic associations at an alpha of 0.05 in at least one population-specific or the multi-population meta-analysis for one of the four MVP COVID-19 outcomes. We used rs8176719 and three additional variants to accurately infer ABO blood types. We found that A, AB, and B blood types were associated with testing positive for COVID-19 compared with O blood type with the highest risk for the A blood group. We did not observe any genome-wide significant associations for COVID-19 severity outcomes among those testing positive. Our study replicates prior GWAS findings associated with testing positive for COVID-19 among mostly White samples and extends findings at three loci to Black and Hispanic individuals. We also report a new locus among Hispanics requiring further investigation. These findings may aid in the identification of novel therapeutic agents to decrease the morbidity and mortality of COVID-19 across all major ancestral populations.

12.
Science ; 369(6509)2020 09 11.
Article in English | MEDLINE | ID: mdl-32913073

ABSTRACT

Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.


Subject(s)
Genetic Variation , Genome, Human , Multifactorial Inheritance , Transcriptome , Humans , Organ Specificity
13.
Nat Genet ; 52(7): 680-691, 2020 07.
Article in English | MEDLINE | ID: mdl-32541925

ABSTRACT

We investigated type 2 diabetes (T2D) genetic susceptibility via multi-ancestry meta-analysis of 228,499 cases and 1,178,783 controls in the Million Veteran Program (MVP), DIAMANTE, Biobank Japan and other studies. We report 568 associations, including 286 autosomal, 7 X-chromosomal and 25 identified in ancestry-specific analyses that were previously unreported. Transcriptome-wide association analysis detected 3,568 T2D associations with genetically predicted gene expression in 687 novel genes; of these, 54 are known to interact with FDA-approved drugs. A polygenic risk score (PRS) was strongly associated with increased risk of T2D-related retinopathy and modestly associated with chronic kidney disease (CKD), peripheral artery disease (PAD) and neuropathy. We investigated the genetic etiology of T2D-related vascular outcomes in the MVP and observed statistical SNP-T2D interactions at 13 variants, including coronary heart disease (CHD), CKD, PAD and neuropathy. These findings may help to identify potential therapeutic targets for T2D and genomic pathways that link T2D to vascular outcomes.


Subject(s)
Diabetes Complications/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Black or African American , Chromosomes, Human, X , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/ethnology , Diabetic Angiopathies/genetics , Europe , Female , Genetic Association Studies , Humans , Hypoglycemic Agents/therapeutic use , Male , Polymorphism, Single Nucleotide , Risk Assessment
14.
PLoS Genet ; 16(3): e1008684, 2020 03.
Article in English | MEDLINE | ID: mdl-32226016

ABSTRACT

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Subject(s)
Lipids/blood , Lipids/genetics , Racial Groups/genetics , Databases, Genetic , Female , Genome-Wide Association Study/methods , Genotype , Humans , Lipids/analysis , Male , Metagenomics/methods , Minority Groups , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , United States/epidemiology
15.
BMC Genomics ; 20(1): 699, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31506062

ABSTRACT

BACKGROUND: Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS: We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS: Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.


Subject(s)
Brain/metabolism , Cichlids/genetics , DNA Methylation , Genomics , Animals , Behavior, Animal , Brain/cytology , GABAergic Neurons/metabolism , Gene Expression Profiling , Hypothalamus/cytology , Hypothalamus/metabolism , Oligodendroglia/metabolism , Signal Transduction/genetics , Social Environment
16.
Horm Behav ; 107: 83-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30578818

ABSTRACT

For many species, social rank determines which individuals perform certain social behaviors and when. Higher ranking or dominant (DOM) individuals maintain status through aggressive interactions and perform courtship behaviors while non-dominant (ND) individuals do not. In some species ND individuals ascend (ASC) in social rank when the opportunity arises. Many important questions related to the mechanistic basis of social ascent remain to be answered. We probed whether androgen signaling regulates social ascent in male Astatotilapia burtoni, an African cichlid whose social hierarchy can be readily controlled in the laboratory. As expected, androgen receptor (AR) antagonism abolished reproductive behavior during social ascent. However, we discovered multiple AR- and status-dependent temporal behavioral patterns that typify social ascent and dominance. AR antagonism in ASC males increased the time between successive behaviors compared to DOM males. Socially ascending males, independent of AR activation, were more likely than DOM males to follow aggressive displays with another aggressive display. Further analyses revealed differences in the sequencing of aggressive and courtship behaviors, wherein DOM males were more likely than ASC males to follow male-directed aggression with courtship displays. Strikingly, this difference was driven mostly by ASC males taking longer to transition from aggression to courtship, suggesting ASC males can perform certain DOM-typical temporal behavioral patterns. Our results indicate androgen signaling is necessary for social ascent and hormonal signaling and social experience may shape the full suite of DOM-typical behavioral patterns.


Subject(s)
Androgens/pharmacology , Cichlids/physiology , Hierarchy, Social , Social Behavior , Aggression/drug effects , Aggression/physiology , Animals , Courtship , Hormones/pharmacology , Male , Social Dominance , Time Factors
17.
Elife ; 72018 01 23.
Article in English | MEDLINE | ID: mdl-29360038

ABSTRACT

Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans.


Subject(s)
Corpus Striatum/physiology , Finches/physiology , Forkhead Transcription Factors/metabolism , Gene Regulatory Networks , Learning , Protein Isoforms/metabolism , Vocalization, Animal , Animals , Gene Expression Profiling , Sequence Analysis, RNA , Spatio-Temporal Analysis
18.
Children (Basel) ; 4(12)2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29215566

ABSTRACT

Behavioral health interventions for pediatric chronic pain include cognitive-behavioral (CBT), acceptance and commitment (ACT), and family-based therapies, though literature regarding multi-family therapy (MFT) is sparse. This investigation examined the utility and outcomes of the Courage to Act with Pain: Teens Identifying Values, Acceptance, and Treatment Effects (CAPTIVATE) program, which included all three modalities (CBT, ACT, MFT) for youth with chronic pain and their parents. Program utility, engagement, and satisfaction were evaluated via quantitative and qualitative feedback. Pain-specific psychological, behavioral, and interpersonal processes were examined along with outcomes related to disability, quality of life, pain interference, fatigue, anxiety, and depressive symptoms. Participants indicated that CAPTIVATE was constructive, engaging, and helpful for social and family systems. Clinical and statistical improvements with large effect sizes were captured for pain catastrophizing, acceptance, and protective parenting but not family functioning. Similar effects were found for functional disability, pain interference, fatigue, anxiety, and depression. Given the importance of targeting multiple systems in the management of pediatric chronic pain, preliminary findings suggest a potential new group-based treatment option for youth and families. Next steps involve evaluating the differential effect of the program over treatment as usual, as well as specific CBT, ACT, and MFT components and processes that may affect outcomes.

19.
Biol Open ; 5(8): 1061-71, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27432479

ABSTRACT

Male African cichlid fish, Astatotilapia burtoni, have been classified as dominant or subordinate, each with unique behavioral and endocrine profiles. Here we characterize two distinct subclasses of dominant males based on types of aggressive behavior: (1) males that display escalating levels of aggression and court females while they establish a territory, and (2) males that display a stable level of aggression and delay courting females until they have established a territory. To profile differences in their approach to a challenge, we used an intruder assay. In every case, there was a male-male confrontation between the resident dominant male and the intruder, with the intruder quickly taking a subordinate role. However, we found that dominant males with escalating aggression spent measurably more time attacking subordinates than did dominant males with stable aggression that instead increased their attention toward the females in their tank. There was no difference in the behavior of intruders exposed to either type of dominant male, suggesting that escalating aggression is an intrinsic characteristic of some dominant males and is not elicited by the behavior of their challengers. Male behavior during the first 15 min of establishing a territory predicts their aggressive class. These two types of dominant males also showed distinctive physiological characteristics. After the intruder assay, males with escalating aggression had elevated levels of 11-ketotestosterone (11-KT), testosterone, estradiol, and cortisol, while those with stable aggression did not. These observations show that the same stimulus can elicit different behavioral and endocrine responses among A. burtoni dominant males that characterize them as either escalating or stable aggressive types. Our ability to identify which individuals within a population have escalating levels of aggressive responses versus those which have stable levels of aggressive responses when exposed to the same stimulus, offers a potentially powerful model for investigating the underlying molecular mechanisms that modulate aggressive behavior.

20.
Curr Biol ; 26(7): 943-9, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26996507

ABSTRACT

In most species, females time reproduction to coincide with fertility. Thus, identifying factors that signal fertility to the brain can provide access to neural circuits that control sexual behaviors. In vertebrates, levels of key signaling molecules rise at the time of fertility to prime the brain for reproductive behavior [1-11], but how and where they regulate neural circuits is not known [12, 13]. Specifically, 17α,20ß-dihydroxyprogesterone (DHP) and prostaglandin F2α (PGF2α) levels rise in teleost fish around the time of ovulation [10, 14, 15]. In an African cichlid fish, Astatotilapia burtoni, fertile females select a mate and perform a stereotyped spawning routine, offering quantifiable behavioral outputs of neural circuits. We show that, within minutes, PGF2α injection activates a naturalistic pattern of sexual behavior in female A. burtoni. We also identify cells in the brain that transduce the prostaglandin signal to mate and show that the gonadal steroid DHP modulates mRNA levels of the putative receptor for PGF2α (Ptgfr). We use CRISPR/Cas9 to generate the first targeted gene mutation in A. burtoni and show that Ptgfr is necessary for the initiation of sexual behavior, uncoupling sexual behavior from reproductive status. Our findings are consistent with a model in which PGF2α communicates fertility status via Ptgfr to circuits in the brain that drive female sexual behavior. Our targeted genome modification in a cichlid fish shows that dissection of gene function can reveal basic control mechanisms for behaviors in this large family of species with diverse and fascinating social systems [16, 17].


Subject(s)
Cichlids/physiology , Dinoprost/metabolism , Sexual Behavior, Animal , Signal Transduction , Animals , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Male , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...