Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(5): 3134-3164, 2024 May.
Article in English | MEDLINE | ID: mdl-38285566

ABSTRACT

Cone-beam computed tomography (CBCT) systems specifically designed and manufactured for dental, maxillofacial imaging (MFI) and otolaryngology (OLR) applications have been commercially available in the United States since 2001 and have been in widespread clinical use since. Until recently, there has been a lack of professional guidance available for medical physicists about how to assess and evaluate the performance of these systems and about the establishment and management of quality control (QC) programs. The owners and users of dental CBCT systems may have only a rudimentary understanding of this technology, including how it differs from conventional multidetector CT (MDCT) in terms of acceptable radiation safety practices. Dental CBCT systems differ from MDCT in several ways and these differences are described. This report provides guidance to medical physicists and serves as a basis for stakeholders to make informed decisions regarding how to manage and develop a QC program for dental CBCT systems. It is important that a medical physicist with experience in dental CBCT serves as a resource on this technology and the associated radiation protection best practices. The medical physicist should be involved at the pre-installation stage to ensure that a CBCT room configuration allows for a safe and efficient workflow and that structural shielding, if needed, is designed into the architectural plans. Acceptance testing of new installations should include assessment of mechanical alignment of patient positioning lasers and x-ray beam collimation and benchmarking of essential image quality performance parameters such as image uniformity, noise, contrast-to-noise ratio (CNR), spatial resolution, and artifacts. Several approaches for quantifying radiation output from these systems are described, including simply measuring the incident air-kerma (Kair) at the entrance surface of the image receptor. These measurements are to be repeated at least annually as part of routine QC by the medical physicist. QC programs for dental CBCT, at least in the United States, are often driven by state regulations, accreditation program requirements, or manufacturer recommendations.


Subject(s)
Cone-Beam Computed Tomography , Quality Control , Humans , Radiography, Dental
3.
Health Phys ; 98(3): 498-514, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20147791

ABSTRACT

This paper reports findings from Nationwide Evaluation of X-ray Trends surveys conducted in 2001, 2002, and 2003 of clinical facilities that perform routine radiographic examinations of the adult chest, abdomen, lumbosacral spine, and upper gastrointestinal fluoroscopic examinations. Randomly identified clinical facilities were surveyed in approximately 40 participating states. For the surveyed radiographic exams, additional facilities that use computed radiography or digital radiography were surveyed to ensure adequate sample sizes for determining comparative statistics. State radiation control personnel performed site visits and collected data on patient exposure, radiographic/fluoroscopic technique factors, image quality, and quality-control and quality-assurance practices. Results of the NEXT surveys are compared with those of previous surveys conducted in 1964 and 1970 by the U.S. Public Health Service and the Food and Drug Administration. An estimated 155 million routine adult chest exams were performed in 2001. Average patient entrance skin air kerma from chest radiography at facilities using digital-based imaging modalities was found to be significantly higher (p < 0.001), but not so for routine abdomen or lumbosacral spine radiography. Digital-based imaging showed a substantial reduction in patient exposure for the radiographic portion of the routine upper gastrointestinal fluoroscopy exam. Long-term trends in surveyed diagnostic examinations show that average patient exposures are at their lowest levels. Of concern is the observation that a substantial fraction of surveyed non-hospital sites indicated they do not regularly have a medical physics survey conducted on their radiographic equipment. These facilities are likely unaware of the radiation doses they administer to their patients.


Subject(s)
Data Collection , Fluoroscopy/statistics & numerical data , Radiography/statistics & numerical data , Adult , Fluoroscopy/methods , Fluoroscopy/standards , Fluoroscopy/trends , Humans , Image Processing, Computer-Assisted , Lumbosacral Region , Quality Control , Radiation Dosage , Radiography/methods , Radiography/standards , Radiography/trends , Radiography, Abdominal/methods , Radiography, Abdominal/standards , Radiography, Abdominal/statistics & numerical data , Radiography, Abdominal/trends , Radiography, Thoracic/methods , Radiography, Thoracic/standards , Radiography, Thoracic/statistics & numerical data , Radiography, Thoracic/trends , Spine/diagnostic imaging , United States , Upper Gastrointestinal Tract/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...