Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Discov ; 13(3): 724-745, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36455589

ABSTRACT

Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE: NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Mutation , Chromatin/genetics
2.
Elife ; 102021 09 29.
Article in English | MEDLINE | ID: mdl-34585664

ABSTRACT

Mutations in the adult ß-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and ß-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named hereditary persistence of fetal hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the ß-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


Subject(s)
CCCTC-Binding Factor/metabolism , Fetal Hemoglobin/genetics , Gene Expression Regulation , Hemoglobinopathies/genetics , beta-Globins/genetics , Binding Sites , CCCTC-Binding Factor/genetics , Hematopoietic Stem Cells/metabolism , Hemoglobinopathies/metabolism , Humans , Mutation , Protein Binding , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , beta-Globins/metabolism
3.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32386543

ABSTRACT

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Subject(s)
Chromatin/chemistry , Chromatin/genetics , DNA Methylation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Humans , In Situ Hybridization, Fluorescence , Lysine/genetics , Lysine/metabolism , Nuclear Proteins/genetics , SOXB1 Transcription Factors/genetics , Short Stature Homeobox Protein/genetics , Transcription Factors/genetics
4.
Biochim Biophys Acta Gene Regul Mech ; 1863(7): 194549, 2020 07.
Article in English | MEDLINE | ID: mdl-32275964

ABSTRACT

The Cyclin B1 gene encodes a G2/M cyclin that is deregulated in various human cancers, however, the transcriptional regulation of this gene is incompletely understood. The E2F and retinoblastoma family of proteins are involved in this gene's regulation, but there is disagreement on which of the E2F and retinoblastoma proteins interact with the promoter to regulate this gene. Here, we dissect the promoter region of the Drosophila CycB gene, and study the role of Rbf and E2F factors in its regulation. This gene exhibits remarkable features that distinguish it from G1/S regulated promoters, such as PCNA. The promoter is comprised of modular elements with dedicated repressor and activator functions, including a segment spanning the first intron that interferes with a 5' activator element. A highly active minimal promoter (-464, +100) is repressed by the Rbf1 retinoblastoma protein, but much more potently repressed by the Rbf2 protein, which has been linked in other studies to control of cell growth genes. Unlike many other cell-cycle genes, which are activated by E2F1 and repressed by E2F2, CycB is potently activated by E2F2, and repressed by E2F1. Although the bulk of Rbf binding is associated with a region 5' of the core promoter, E2F and retinoblastoma proteins functionally interact with the basal promoter region, in part through a conserved E2F site at -80 bp. The specific regulatory requirements of this late cell cycle promoter appear to be linked to the unique activities of E2F and retinoblastoma family members acting on a complex cis-regulatory circuit.


Subject(s)
Cyclin B/genetics , Drosophila Proteins/genetics , Promoter Regions, Genetic , Transcriptional Activation , Animals , Cell Line , Conserved Sequence , Cyclin B/chemistry , Cyclin B/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster , Introns , Protein Binding , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Mol Biol Evol ; 36(12): 2790-2804, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31418797

ABSTRACT

Retinoblastoma proteins are eukaryotic transcriptional corepressors that play central roles in cell cycle control, among other functions. Although most metazoan genomes encode a single retinoblastoma protein, gene duplications have occurred at least twice: in the vertebrate lineage, leading to Rb, p107, and p130, and in Drosophila, an ancestral Rbf1 gene and a derived Rbf2 gene. Structurally, Rbf1 resembles p107 and p130, and mutation of the gene is lethal. Rbf2 is more divergent and mutation does not lead to lethality. However, the retention of Rbf2 >60 My in Drosophila points to essential functions, which prior cell-based assays have been unable to elucidate. Here, using genomic approaches, we provide new insights on the function of Rbf2. Strikingly, we show that Rbf2 regulates a set of cell growth-related genes and can antagonize Rbf1 on specific genes. These unique properties have important implications for the fly; Rbf2 mutants show reduced egg laying, and lifespan is reduced in females and males. Structural alterations in conserved regions of Rbf2 gene suggest that it was sub- or neofunctionalized to develop specific regulatory specificity and activity. We define cis-regulatory features of Rbf2 target genes that allow preferential repression by this protein, indicating that it is not a weaker version of Rbf1 as previously thought. The specialization of retinoblastoma function in Drosophila may reflect a parallel evolution found in vertebrates, and raises the possibility that cell growth control is equally important to cell cycle function for this conserved family of transcriptional corepressors.


Subject(s)
Drosophila Proteins/physiology , Drosophila/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Repressor Proteins/physiology , Retinoblastoma Protein/physiology , Transcription Factors/physiology , Adaptation, Biological , Amino Acid Sequence , Animals , Female , Male , Ovary/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL