Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798502

ABSTRACT

Background: Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis. Methods: We established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3. Results: RNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not. Conclusion: We demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation's role in altering biological pathways and its necessity for tumor development. Key Points: We revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development. Importance of the Study: This study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.

2.
Neurooncol Adv ; 5(1): vdad033, 2023.
Article in English | MEDLINE | ID: mdl-37128506

ABSTRACT

Background: H3K27-altered diffuse midline glioma (DMG) is the deadliest pediatric brain tumor; despite intensive research efforts, every clinical trial to date has failed. Is this because we are choosing the wrong drugs? Or are drug delivery and other pharmacokinetic variables at play? We hypothesize that the answer is likely a combination, where optimization may result in a much needed novel therapeutic approach. Methods: We used in vitro drug screening, patient samples, and shRNA knockdown models to identify an upregulated target in DMG. A single small molecule protein kinase inhibitor with translational potential was selected for systemic and direct, loco-regional delivery to patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM). Pharmacokinetic studies were conducted in non-tumor bearing rats. Results: Aurora kinase (AK) inhibitors demonstrated strong antitumor effects in DMG drug screens. Additional in vitro studies corroborated the importance of AK to DMG survival. Systemic delivery of alisertib showed promise in subcutaneous PDX but not intracranial GEMM and PDX models. Repeated loco-regional drug administration into the tumor through convection-enhanced delivery (CED) was equally inefficacious, and pharmacokinetic studies revealed rapid clearance of alisertib from the brain. In an effort to increase the drug to tumor residence time, continuous CED over 7 days improved drug retention in the rodent brainstem and significantly extended survival in both orthotopic PDXs and GEMMs. Conclusions: These studies provide evidence for increasing drug-tumor residence time of promising targeted therapies via extended CED as a valuable treatment strategy for DMG.

3.
J Cell Sci ; 136(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36861884

ABSTRACT

The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.


Subject(s)
Kinesins , Purkinje Cells , Animals , Mice , Kinesins/genetics , Proteomics , Biological Transport , Lysosomes , Mice, Knockout
4.
Cells ; 11(21)2022 10 26.
Article in English | MEDLINE | ID: mdl-36359771

ABSTRACT

Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.


Subject(s)
Glioma , Ovarian Neoplasms , Humans , Female , Histones/metabolism , Carcinoma, Ovarian Epithelial/genetics , Glioma/genetics , Glioma/pathology , DNA Methylation , Epigenesis, Genetic , Ovarian Neoplasms/genetics
5.
Neuro Oncol ; 24(10): 1700-1711, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35397475

ABSTRACT

BACKGROUND: H3K27M-mutant diffuse midline glioma (DMG) is a lethal brain tumor that usually occurs in children. Despite advances in our understanding of its underlying biology, efficacious therapies are severely lacking. METHODS: We screened a library of drugs either FDA-approved or in clinical trial using a library of patient-derived H3K27M-mutant DMG cell lines with cell viability as the outcome. Results were validated for clinical relevance and mechanistic importance using patient specimens from biopsy and autopsy, patient-derived cell lines, inhibition by gene knockdown and small molecule inhibitors, and patient-derived xenografts. RESULTS: Kinase inhibitors were highly toxic to H3K27M-mutant DMG cells. Within this class, STAT3 inhibitors demonstrated robust cytotoxic activity in vitro. Mechanistic analyses revealed one form of activated STAT3, phospho-tyrosine- 705 STAT3 (pSTAT3), was selectively upregulated in H3K27M-mutant cell lines and clinical specimens. STAT3 inhibition by CRISPR/Cas9 knockout, shRNA or small molecule inhibition reduced cell viability in vitro, and partially restored expression of the polycomb repressive mark H3K27me3, which is classically lost in H3K27M-mutant DMG. Putative STAT3-regulated genes were enriched in an H3K27M-knockout DMG cell line, indicating relative gain of STAT3 signaling in K27M-mutant cells. Treatment of patient-derived intracranial xenografts with WP1066, a STAT3 pathway inhibitor currently in clinical use for pediatric brain tumors, resulted in stasis of tumor growth, and increased overall survival. Finally, pSTAT3(Y705) was detected in circulating plasma extracellular vesicles of patients with H3K27M-mutant DMG. CONCLUSIONS: STAT3 is a biologically relevant therapeutic target in H3K27M-mutant DMG. STAT3 inhibition should be considered in future clinical trials.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Histones/genetics , Humans , Mutation , RNA, Small Interfering/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tyrosine
6.
Methods Mol Biol ; 2415: 105-122, 2022.
Article in English | MEDLINE | ID: mdl-34972949

ABSTRACT

The introduction of macromolecules directly into individual cells by microinjection is an important technique for manipulating mitotic cells. mRNA, purified proteins, or concentrated antibodies can all be injected directly into a single cell, and their effects monitored by live-cell imaging. The equipment necessary is relatively simple, and the technique can be easily mastered. Here we describe our microinjection setup, how to microinject cultured mammalian cells in mitosis, and how to analyze those cells by same-cell live and fixed imaging.


Subject(s)
Mammals , Mitosis , Animals , Cell Line , Cells, Cultured , Microinjections/methods
7.
Methods Cell Biol ; 158: 43-61, 2020.
Article in English | MEDLINE | ID: mdl-32423650

ABSTRACT

The study of mitosis has always relied on bulk-preparation biochemistry techniques (Mazia & Dan, 1952), but very early on lent itself to living, single cell microscopic techniques (Inoue, 1953; Taylor, 1959). Here we describe several of the methods used by our lab to study cell division in living cultured cells, including cold-induced mitotic arrest, cold-induced chromosome missegregation, same-cell live and fixed cell imaging, and microinjection of inactivating antibodies. We detail our imaging system based on an upright fluorescent microscope and spinning disk confocal, as well as the customized "HEKS" metal support slide imaging chambers.


Subject(s)
Cell Culture Techniques/methods , Mammals/physiology , Mitosis , Research , Animals , Cell Line , Chlorocebus aethiops , Humans , Imaging, Three-Dimensional , Microinjections , Rats , Spindle Apparatus/metabolism
8.
Prog Lipid Res ; 78: 101031, 2020 04.
Article in English | MEDLINE | ID: mdl-32339554

ABSTRACT

Glycolipid transfer proteins (GLTPs) were first identified over three decades ago as ~24kDa, soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. Upon discovery that GLTPs use a unique, all-α-helical, two-layer 'sandwich' architecture (GLTP-fold) to bind glycosphingolipids (GSLs), a new protein superfamily was born. Structure/function studies have provided exquisite insights defining features responsible for lipid headgroup selectivity and hydrophobic 'pocket' adaptability for accommodating hydrocarbon chains of differing length and unsaturation. In humans, evolutionarily-modified GLTP-folds have been identified with altered sphingolipid specificity, e. g. ceramide-1-phosphate transfer protein (CPTP), phosphatidylinositol 4-phosphate adaptor protein-2 (FAPP2) which harbors a GLTP-domain and GLTPD2. Despite the wealth of structural data (>40 Protein Data Bank deposits), insights into the in vivo functional roles of GLTP superfamily members have emerged slowly. In this review, recent advances are presented and discussed implicating human GLTP superfamily members as important regulators of: i) pro-inflammatory eicosanoid production associated with Group-IV cytoplasmic phospholipase A2; ii) autophagy and inflammasome assembly that drive surveillance cell release of interleukin-1ß and interleukin-18 inflammatory cytokines; iii) cell cycle arrest and necroptosis induction in certain colon cancer cell lines. The effects exerted by GLTP superfamily members appear linked to their ability to regulate sphingolipid homeostasis by acting in either transporter and/or sensor capacities. These timely findings are opening new avenues for future cross-disciplinary, translational medical research involving GLTP-fold proteins in human health and disease. Such avenues include targeted regulation of specific GLTP superfamily members to alter sphingolipid levels as a therapeutic means for combating viral infection, neurodegenerative conditions and circumventing chemo-resistance during cancer treatment.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Cell Death , Inflammation/metabolism , Humans
9.
Sci Signal ; 12(610)2019 12 03.
Article in English | MEDLINE | ID: mdl-31796632

ABSTRACT

The sphingolipid ceramide 1-phosphate (C1P) directly binds to and activates group IVA cytosolic phospholipase A2 (cPLA2α) to stimulate the production of eicosanoids. Because eicosanoids are important in wound healing, we examined the repair of skin wounds in knockout (KO) mice lacking cPLA2α and in knock-in (KI) mice in which endogenous cPLA2α was replaced with a mutant form having an ablated C1P interaction site. Wound closure rate was not affected in the KO or KI mice, but wound maturation was enhanced in the KI mice compared to that in wild-type controls. Wounds in KI mice displayed increased infiltration of dermal fibroblasts into the wound environment, increased wound tensile strength, and a higher ratio of type I:type III collagen. In vitro, primary dermal fibroblasts (pDFs) from KI mice showed substantially increased collagen deposition and migration velocity compared to pDFs from wild-type and KO mice. KI mice also showed an altered eicosanoid profile of reduced proinflammatory prostaglandins (PGE2 and TXB2) and an increased abundance of certain hydroxyeicosatetraenoic acid (HETE) species. Specifically, an increase in 5-HETE enhanced dermal fibroblast migration and collagen deposition. This gain-of-function role for the mutant cPLA2α was also linked to the relocalization of cPLA2α and 5-HETE biosynthetic enzymes to the cytoplasm and cytoplasmic vesicles. These findings demonstrate the regulation of key wound-healing mechanisms in vivo by a defined protein-lipid interaction and provide insights into the roles that cPLA2α and eicosanoids play in orchestrating wound repair.


Subject(s)
Ceramides/metabolism , Group IV Phospholipases A2/genetics , Group IV Phospholipases A2/metabolism , Wound Healing , Animals , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation , Collagen/metabolism , Cytoplasm/metabolism , Cytosol/metabolism , Dinoprostone/metabolism , Eicosanoids/metabolism , Fibroblasts/metabolism , Genotype , Hydroxyeicosatetraenoic Acids/pharmacology , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Skin/metabolism , Tensile Strength , Thromboxane B2/metabolism
10.
Transl Oncol ; 12(8): 1056-1071, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31174057

ABSTRACT

Therapy failure and metastasis-associated mortality are stumbling blocks in the management of PDAC in patients. Failure of therapy is associated to intense hypoxic conditions of tumors. To develop effective therapies, a complete understanding of hypoxia-associated changes in genetic landscape of tumors during disease progression is needed. Because artificially immortalized cell lines do not rightly represent the disease progression, studying genetics of tumors in spontaneous models is warranted. In the current study, we generated a spectrum of spontaneous human (UM-PDC1; UM-PDC2) and murine (HI-PanL, HI-PancI, HI-PanM) models representing localized, invasive, and metastatic PDAC from a patient and transgenic mice (K-rasG12D/Pdxcre/Ink4a/p16-/). These spontaneous models grow vigorously under hypoxia and exhibit activated K-ras signaling, progressive loss of PTEN, and tumorigenicity in vivo. Whereas UM-PDC1 form localized tumors, the UM-PDC2 metastasize to lungs in mice. In an order of progression, these models exhibit genomic instability marked by gross chromosomal rearrangements, centrosome-number variations, Aurora-kinase/H2AX colocalization, loss of primary cilia, and α-tubulin acetylation. The RNA sequencing of hypoxic models followed by qRT-PCR validation and gene-set enrichment identified Intestine-Specific Homeobox factor (ISX)-driven molecular pathway as an indicator PDAC aggressivness. TCGA-PAAD clinical data analysis showed high ISX expression correlation to poor survival of PDAC patients, particularly women. The functional studies showed ISX as a regulator of i) invasiveness and migratory potential and ii) VEGF, MMP2, and NFκB activation in PDAC cells. We suggest that ISX is a potential druggable target and newly developed spontaneous cell models are valuable tools for studying mechanism and testing therapies for PDAC.

11.
Methods Cell Biol ; 145: 159-172, 2018.
Article in English | MEDLINE | ID: mdl-29957202

ABSTRACT

The use of microtechnique for studying cell division is well established (Begg & Ellis, 1979; Wadsworth, 1999; Zhang & Nicklas, 1999). The advantage of microinjection in cell division research is the timed delivery of a macromolecules at a particular stage of mitosis (for example, pre- vs postanaphase), which can circumvent the spindle assembly checkpoint (Hinchcliffe et al., 2016). Micromanipulation can be used to remove whole organelles, such as the centrosome or nucleus and examine the effects on cell division (Hinchcliffe et al., 2001; Hornick et al., 2011). The focus of this chapter is on methods for microinjection and micromanipulation of cultured mammalian cells. We describe pulling and shaping microneedles, as well as the imaging chambers we use. We also provide information on cell culture conditions, and imaging techniques used for our long-term observation studies, which allow cells to be followed on the order of several days.


Subject(s)
Microinjections/methods , Microsurgery/methods , Mitosis/physiology , Animals , Centrosome/physiology , Humans , Micromanipulation/methods , Spindle Apparatus/physiology
12.
Autophagy ; 14(5): 862-879, 2018.
Article in English | MEDLINE | ID: mdl-29164996

ABSTRACT

The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1ß and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Inflammasomes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Binding Sites , Caspase 1/metabolism , Ceramides/pharmacology , Cytokines/metabolism , Down-Regulation/drug effects , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , Inflammation Mediators/metabolism , Membrane Proteins/metabolism , Mutation/genetics , TOR Serine-Threonine Kinases/metabolism , Vesicular Transport Proteins/metabolism
13.
Nat Cell Biol ; 18(6): 668-75, 2016 06.
Article in English | MEDLINE | ID: mdl-27136267

ABSTRACT

Maloriented chromosomes can evade the spindle assembly checkpoint and generate aneuploidy, a common feature of tumorigenesis. But chromosome missegregation in non-transformed cells triggers a p53-dependent fail-safe mechanism that blocks proliferation of normal cells that inadvertently become aneuploid. How this fail-safe is triggered is not known. Here we identify a conserved feedback mechanism that monitors missegregating chromosomes during anaphase through the differential phosphorylation of histone H3.3 at Ser31. We do this by inducing transient chromosome missegregation in diploid cells. During anaphase, H3.3 Ser31 is phosphorylated along the arms of lagging or misaligned chromosomes. Within minutes, Ser31 phosphorylation (Ser31P) spreads to all of the chromatids of both daughter cells, which persists into G1. Masking H3.3 Ser31P by antibody microinjection prevents nuclear p53 accumulation in the aneuploid daughters. Previous work demonstrated that prolonged prometaphase and DNA damage during abnormal mitosis can activate p53. We show that p53 activation in response to chromosome missegregation can occur without prolonged mitosis or DNA damage. Our study provides insight into how aneuploidy caused by chromosome missegregation is normally monitored and suppressed.


Subject(s)
Anaphase , Cell Cycle Checkpoints/genetics , Chromosome Segregation/genetics , Chromosomes/metabolism , Genes, p53/genetics , Histones/metabolism , Animals , Cell Cycle Proteins/metabolism , DNA Damage/genetics , Humans , Mitosis/physiology , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism
14.
Mol Reprod Dev ; 82(7-8): 508-17, 2015.
Article in English | MEDLINE | ID: mdl-24375801

ABSTRACT

Digital microscopy has revolutionized quantitative imaging, with binary-encoded computer files serving to capture and store imaging data sets for analysis. With the ever-present use of computers to generate and store imaging data, it becomes increasingly important to understand how these files are created, and how they can be both used and mis-used. This is a particularly important task for the biologist who may have limited background in computer science. Here we discuss some of the basic aspects of digital data storage and use, including file types, storage media, and the choice between commercial and open-source software. Often, open-source software is written by a user or group of users, and then distributed to the scientific community at large. These can be important tools, but there are some hidden costs to this freeware that we will discuss. We will also compare open-source software to commercial imaging software, which is often written for use by non-computer scientists.


Subject(s)
Image Processing, Computer-Assisted/methods , Information Storage and Retrieval/methods , Microscopy , Software , Humans
15.
Int Rev Cell Mol Biol ; 313: 179-217, 2014.
Article in English | MEDLINE | ID: mdl-25376493

ABSTRACT

The assembly of a bipolar spindle lies at the heart of mitotic chromosome segregation. In animal somatic cells, the process of spindle assembly involves multiple complex interactions between various cellular compartments, including an emerging antiparallel microtubule network, microtubule-associated motor proteins and spindle assembly factors, the cell's cortex, and the chromosomes themselves. The result is a dynamic structure capable of aligning pairs of sister chromatids, sensing chromosome misalignment, and generating force to segregate the replicated genome into two daughters. Because the centrosome lies at the center of the array of microtubule minus-ends, and the essential one-to-two duplication of the centrosome prior to mitosis is linked to cell cycle progression, this organelle has long been implicated as a device to generate spindle bipolarity. However, this classic model for spindle assembly is challenged by observations and experimental manipulations demonstrating that acentrosomal cells can and do form bipolar spindles, both mitotic and meiotic. Indeed, recent comprehensive proteomic analysis of centrosome-dependent versus independent mitotic spindle assembly mechanisms reveals a large, common set of genes required for both processes, with very few genes needed to differentiate between the two. While these studies cast doubt on an absolute role for the centrosome in establishing spindle polarity, it is clear that having too few or too many centrosomes results in abnormal chromosome segregation and aneuploidy. Here we review the case both for and against the role of the centrioles and centrosomes in ensuring proper assembly of a bipolar spindle, an essential element in the maintenance of genomic stability.


Subject(s)
Centrosome/physiology , Chromosome Segregation , Mitosis , Spindle Apparatus/physiology , Animals , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Chromosomal Instability , Humans , Microtubule Proteins/metabolism , Spindle Apparatus/metabolism
16.
Methods Cell Biol ; 114: 285-315, 2013.
Article in English | MEDLINE | ID: mdl-23931511

ABSTRACT

Image processing of images serves a number of important functions including noise reduction, contrast enhancement, and feature extraction. Whatever the final goal, an understanding of the nature of image acquisition and digitization and subsequent mathematical manipulations of that digitized image is essential. Here we discuss the basic mathematical and statistical processes that are routinely used by microscopists to routinely produce high quality digital images and to extract key features of interest using a variety of extraction and thresholding tools.


Subject(s)
Data Interpretation, Statistical , Image Processing, Computer-Assisted/methods , Algorithms , Animals , Cells, Cultured , Electronic Data Processing , Fluorescence Recovery After Photobleaching , Fourier Analysis , Humans , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Signal-To-Noise Ratio
17.
Methods Cell Biol ; 114: 317-36, 2013.
Article in English | MEDLINE | ID: mdl-23931512

ABSTRACT

Computers dominate image capture and analysis in modern light microscopy. The output of an imaging experiment is a binary coded file, called an image file, which contains the spatial, temporal and intensity information present in the sample. Understanding what comprises an image file, and how these files are generated is necessary in order to optimize the use of the digital light microscope. In this chapter, we discuss image file formats, and the various components of these files, such as bit-depth, sampling rate, color theory, and compression, from the perspective of the non-computer scientist. We also discuss the problem of proprietary file formats, and how these often are incompatible with certain types of imaging software. We present several solutions to this issue. Finally, we present the use of digital movie formats, compression routines, and provide some real world examples for optimizing the generation of digital movies.


Subject(s)
Image Processing, Computer-Assisted , Animals , Cell Line , Data Compression , Humans , Microscopy, Fluorescence/methods , Microscopy, Video/methods , Video Recording
18.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23863933

ABSTRACT

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Eicosanoids/metabolism , Animals , Apoproteins/chemistry , Arachidonic Acid/metabolism , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Membrane/metabolism , Cell Nucleus/metabolism , Ceramides/chemistry , Crystallography, X-Ray , Cytosol/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Phosphatidic Acids/chemistry , Phosphatidic Acids/metabolism , Phospholipid Transfer Proteins , Protein Conformation , Protein Folding , Substrate Specificity , trans-Golgi Network/metabolism
19.
Cell Cycle ; 10(22): 3841-8, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22071626

ABSTRACT

In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.


Subject(s)
Centrosome/physiology , Spindle Apparatus/physiology , Animals , Cell Line , Cell Polarity , Centrosome/ultrastructure , Chlorocebus aethiops , Drosophila/cytology , Drosophila/metabolism , Drosophila/ultrastructure , Female , Mice , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Oocytes/cytology , Oocytes/metabolism , Oocytes/ultrastructure , Sea Urchins/cytology , Sea Urchins/metabolism , Sea Urchins/ultrastructure , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure
20.
Mol Biol Cell ; 22(18): 3318-30, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21775627

ABSTRACT

Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.


Subject(s)
Cytoplasmic Dyneins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kinetochores/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Substitution , Animals , Aurora Kinase B , Aurora Kinases , Benzamides/pharmacology , Dynactin Complex , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , M Phase Cell Cycle Checkpoints , Metaphase , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Rats , Single-Cell Analysis , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...