Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0268213, 2022.
Article in English | MEDLINE | ID: mdl-35714073

ABSTRACT

Bergmann's and Allen's rules were defined to describe macroecological patterns across latitudinal gradients. Bergmann observed a positive association between body size and latitude for endothermic species while Allen described shorter appendages as latitude increases. Almost two centuries later, there is still ongoing discussion about these patterns. Temperature, the common variable in these two rules, varies predictably across both latitude and elevation. Although these rules have been assessed extensively in mammals across latitude, particularly in regions with strong seasonality, studies on tropical montane mammals are scarce. We here test for these patterns and assess the variation of several other locomotory, diet-associated, body condition, and thermoregulatory traits across elevation in the Mountain Treeshrew (Tupaia montana) on tropical mountains in Borneo. Based on morphological measurements from both the field and scientific collections, we found a complex pattern: Bergmann's rule was not supported in our tropical mountain system, since skull length, body size, and weight decreased from the lowest elevations (<1000 m) to middle elevations (2000-2500 m), and then increased from middle elevations to highest elevations. Allen's rule was supported for relative tail length, which decreased with elevation, but not for ear and hindfoot length, with the former remaining constant and the latter increasing with elevation. This evidence together with changes in presumed diet-related traits (rostrum length, zygomatic breadth and upper tooth row length) along elevation suggest that selective pressures other than temperature, are playing a more important role shaping the morphological variation across the distribution of the Mountain Treeshrew. Diet, food acquisition, predation pressure, and/or intra- and inter-specific competition, are some of the potential factors driving the phenotypic variation of this study system. The lack of variation in body condition might suggest local adaptation of this species across its elevational range, perhaps due to generalist foraging strategies. Finally, a highly significant temporal effect was detected in several traits but not in others, representing the first phenotypic variation temporal trends described on treeshrews.


Subject(s)
Biological Variation, Population , Tupaia , Animals , Body Size , Montana , Temperature
2.
Mol Phylogenet Evol ; 130: 81-91, 2019 01.
Article in English | MEDLINE | ID: mdl-30321698

ABSTRACT

North Africa is a climatically and topographically complex region with unique biotic assemblages resulting from the combination of multiple biogeographic realms. Here, we assess the role of climate in promoting intra-specific diversification in a Palearctic relict, the North African fire salamander, Salamandra algira, using a combination of phylogenetic and population genetic analyses, paleoclimatic modelling and niche overlap tests. We used mitochondrial DNA (Cyt-b), 9838 ddRADseq loci, and 14 microsatellite loci to characterize patterns of genetic diversity and population structure. Phylogenetic analyses recover two major clades, each including several lineages with mito-nuclear discordances suggesting introgressive patterns between lineages in the Middle Atlas, associated with a melting pot of genetic diversity. Paleoclimatic modelling identified putative climatic refugia, largely matching areas of high genetic diversity, and supports the role of aridity in promoting allopatric diversification associated with ecological niche conservatism. Overall, our results highlight the role of climatic microrefugia as drivers of populations' persistence and diversification in the face of climatic oscillations in North Africa, and stress the importance of accounting for different genomic regions when reconstructing biogeographic processes from molecular markers.


Subject(s)
Phylogeny , Salamandra/classification , Africa, Northern , Animals , DNA, Mitochondrial/genetics , Ecosystem , Genetic Variation , Genetics, Population , Microsatellite Repeats/genetics , Models, Biological , Phylogeography , Salamandra/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...