Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 43(5): 988-998, 2024 May.
Article in English | MEDLINE | ID: mdl-38415966

ABSTRACT

Anticoagulant rodenticides (ARs) have caused widespread contamination and poisoning of predators and scavengers. The diagnosis of toxicity proceeds from evidence of hemorrhage, and subsequent detection of residues in liver. Many factors confound the assessment of AR poisoning, particularly exposure dose, timing and frequency of exposure, and individual and taxon-specific variables. There is a need, therefore, for better AR toxicity criteria. To respond, we compiled a database of second-generation anticoagulant rodenticide (SGAR) residues in liver and postmortem evaluations of 951 terrestrial raptor carcasses from Canada and the United States, 1989 to 2021. We developed mixed-effects logistic regression models to produce specific probability curves of the toxicity of ∑SGARs at the taxonomic level of the family, and separately for three SGARs registered in North America, brodifacoum, bromadiolone, and difethialone. The ∑SGAR threshold concentrations for diagnosis of coagulopathy at 0.20 probability of risk were highest for strigid owls (15 ng g-1) lower and relatively similar for accipitrid hawks and eagles (8.2 ng g-1) and falcons (7.9 ng g-1), and much lower for tytonid barn owls (0.32 ng g-1). These values are lower than those we found previously, due to compilation and use of a larger database with a mix of species and source locations, and also to refinements in the statistical methods. Our presentation of results on the family taxonomic level should aid in the global applicability of the numbers. We also collated a subset of 440 single-compound exposure events and determined the probability of SGAR-poisoning symptoms as a function of SGAR concentration, which we then used to estimate relative SGAR toxicity and toxic equivalence factors: difethialone, 1, brodifacoum, 0.8, and bromadiolone, 0.5. Environ Toxicol Chem 2024;43:988-998. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Subject(s)
Anticoagulants , Raptors , Rodenticides , Rodenticides/toxicity , Animals , Anticoagulants/toxicity , Anticoagulants/poisoning , 4-Hydroxycoumarins/poisoning , 4-Hydroxycoumarins/toxicity , Canada , Environmental Monitoring
2.
Environ Toxicol Chem ; 41(8): 1903-1917, 2022 08.
Article in English | MEDLINE | ID: mdl-35678209

ABSTRACT

As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 µg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Subject(s)
Raptors , Rodenticides , Strigiformes , Animals , Anticoagulants , British Columbia , Female , Rats , Rodenticides/analysis
3.
Sci Total Environ ; 657: 1205-1216, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30677887

ABSTRACT

Non-target wildlife, particularly birds of prey, are widely exposed to and acutely poisoned by anticoagulant rodenticides (ARs). An unresolved issue surrounding such exposure, however, is the potential for sublethal effects. In particular, the consequences of AR exposure and resulting coagulopathy on health and survival of unintentionally exposed animals, which often encounter a multitude of anthropogenic stressors, are understudied. In a wildlife rehabilitation setting, AR intoxication may be masked by more obvious injuries related to collision with vehicles or electrocution, thereby obfuscating proximate from ultimate cause of mortality. An assessment of coagulation function of admitted wildlife may provide a means of identifying animals exhibiting sublethal coagulopathy, and ultimately ensuring provision of appropriate and swift treatment. In conjunction with routine diagnostics for injury and disease, we performed two blood clotting assays (prothrombin time, Russell's viper venom time) affected by vitamin K-dependent coagulopathy of samples from six species of live raptors admitted to a rehabilitation facility. We also measured clotting time in pre-fledgling barn owl chicks (Tyto furcata) from 10 nest sites in Lower Mainland Canada. Prolonged clotting time or failure to form a clot altogether was observed in 23.0% of 61 sampled raptors admitted to the rehabilitation facility. This is a biologically significant proportion of individuals given the fortuitous and likely biased nature by which raptors are found and admitted to rehabilitation facilities. In contrast, there was little evidence of coagulopathy in 19 pre-fledgling barn owl chicks. The utility of avian coagulation tests for diagnosing AR exposure is promising, yet there remains a need to establish species specific reference values and standardize assay methodologies among testing facilities.


Subject(s)
Anticoagulants/toxicity , Ecotoxicology/methods , Raptors , Rodenticides/toxicity , Strigiformes , Animals , Anticoagulants/analysis , Blood Coagulation/drug effects , Canada , Environmental Exposure/adverse effects , Fibrinogen/analysis , Liver/chemistry , Predatory Behavior , Prothrombin Time , Rodenticides/analysis
4.
Ecotoxicology ; 25(6): 1061-71, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27151403

ABSTRACT

Among many anthropogenic drivers of population decline, continual rapid urbanization and industrialization pose major challenges for the survival of wildlife species. Barn owls (Tyto alba) in southwestern British Columbia (BC) face a multitude of threats ranging from habitat fragmentation to vehicle strikes. They are also at risk from secondary poisoning of second-generation anticoagulant rodenticides (SGARs), a suite of toxic compounds which at high doses results in a depletion of blood clotting factors leading to internal bleeding and death. Here, using long-term data (N = 119) for the hepatic residue levels of SGAR, we assessed the risk of toxicosis from SGAR for the BC barn owl population over the past two decades. We also investigated whether sensitivity to SGAR is associated with genetic factors, namely Single Nucleotide Polymorphisms (SNPs) found in the CYP2C45 gene of barn owls. We found that residue concentration for total SGAR was significantly higher in 2006-2013 (141 ng/g) relative to 1992-2003 (57 ng/g). The proportion of owls exposed to multiple SGAR types was also significantly higher in 2006-2013. Those measures accordingly translate directly into an increase in toxicosis risk level. We also detected demographic differences, where adult females showed on average lower concentration of total SGAR (64 ng/g) when compared to adult males (106 ng/g). Juveniles were overall more likely to show signs of toxicosis than adults (33.3 and 6.9 %, respectively), and those symptoms were positively predicted by SGAR concentrations. We found no evidence that SNPs in the CYP2C45 gene of barn owls were associated with intraspecific variation in SGAR sensitivity. We recommend several preventative measures be taken to minimize wildlife exposure to SGAR.


Subject(s)
Anticoagulants/toxicity , Environmental Monitoring , Rodenticides/toxicity , Strigiformes/physiology , Animals , British Columbia , Dose-Response Relationship, Drug , Environmental Pollutants/toxicity , Risk
5.
Environ Monit Assess ; 186(2): 895-906, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24048882

ABSTRACT

Second-generation anticoagulant rodenticides are widely reported to contaminate and poison nontarget wildlife, primarily predatory birds and mammals. Exposure pathways, however, have not been well defined. Here, we examined potential movement of rodenticides from deployment of bait to exposure of small mammals and other biota. At two adjacent working farms, we placed baits containing either brodifacoum or bromadiolone. We monitored movement of those compounds to the surrounding environment by collecting small mammals, birds, and invertebrates. Similar collections were made at a third agricultural setting without active bait deployment, but located among intensive livestock production and regular rodenticide use by farmers. Livers and whole invertebrate samples were analyzed for rodenticides using a sensitive LC-MSMS method. Norway rats (Rattus norvegicus) from both baited and non-baited farms had residues of brodifacoum or bromadiolone, implicating rats as an important exposure pathway to wildlife. Among 35 analyzed nontarget small mammals, a single vole had high hepatic residues (18.6 µ/g), providing some indication of a small mammal pathway. One song sparrow (Melospiza melodia) sample from a baited farm contained 0.073 µg/g of brodifacoum in liver, while 0.39 µg/g of diphacinone was measured in a pool of carrion beetles (Dermestes spp.) from the non-baited farm area, implicating avian and invertebrate components in exposure pathways. Regurgitated pellets of barn owl (Tyto alba) selected randomly from baited farms contained no detectable rodenticide residues, while 90% of owl pellets collected from a variety of farms, and selected for the presence of rat fur, contained detectable anticoagulant residues. We recorded behavior of a captive sample of a representative songbird, the house sparrow (Passer domesticus); they readily entered bait stations and fed on (unloaded) bait.


Subject(s)
Anticoagulants/metabolism , Birds/metabolism , Environmental Exposure/analysis , Mammals/metabolism , Rodenticides/metabolism , Animals , Anticoagulants/analysis , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Rodenticides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...