Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 49: 178-191, 2018 09.
Article in English | MEDLINE | ID: mdl-30138679

ABSTRACT

Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.


Subject(s)
Flavoring Agents/metabolism , Genes, Fungal , Genomics , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
PLoS One ; 9(11): e112835, 2014.
Article in English | MEDLINE | ID: mdl-25415563

ABSTRACT

UNLABELLED: Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼ 450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN76920690.


Subject(s)
Biomarkers/metabolism , Caloric Restriction , Diabetes Mellitus, Type 2/metabolism , Proteomics , Female , Glycated Hemoglobin/metabolism , Humans , Male , Mass Spectrometry , Middle Aged
3.
Toxicol Pathol ; 40(6): 951-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22573522

ABSTRACT

The Liver Toxicity Biomarker Study is a systems toxicology approach to discover biomarkers that are indicative of a drug's potential to cause human idiosyncratic drug-induced liver injury. In phase I, the molecular effects in rat liver and blood plasma induced by tolcapone (a "toxic" drug) were compared with the molecular effects in the same tissues by dosing with entacapone (a "clean" drug, similar to tolcapone in chemical structure and primary pharmacological mechanism). Two durations of drug exposure, 3 and 28 days, were employed. Comprehensive molecular analysis of rat liver and plasma samples yielded marker analytes for various drug-vehicle or drug-drug comparisons. An important finding was that the marker analytes associated with tolcapone only partially overlapped with marker analytes associated with entacapone, despite the fact that both drugs have similar chemical structures and the same primary pharmacological mechanism of action. This result indicates that the molecular analyses employed in the study are detecting substantial "off-target" markers for the two drugs. An additional interesting finding was the modest overlap of the marker data sets for 3-day exposure and 28-day exposure, indicating that the molecular changes in liver and plasma caused by short- and long-term drug treatments do not share common characteristics.


Subject(s)
Benzophenones/toxicity , Catechols/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Nitriles/toxicity , Nitrophenols/toxicity , Animals , Biomarkers/analysis , Blood Proteins/analysis , Chemical and Drug Induced Liver Injury/blood , Female , Gene Expression Profiling , Liver/chemistry , Liver/metabolism , Male , Metabolome/drug effects , Metabolomics , Proteome/analysis , Proteome/drug effects , Proteomics , Rats , Research Design , Tolcapone , Toxicity Tests, Acute/methods , Toxicity Tests, Chronic/methods
4.
Int J Mol Sci ; 12(7): 4609-24, 2011.
Article in English | MEDLINE | ID: mdl-21845099

ABSTRACT

Drug-induced liver injury (DILI) is the primary adverse event that results in the withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in the pre-clinical or clinical phases of drug development. This paper presents an approach for identifying potential liver toxicity genomic biomarkers from a liver toxicity biomarker study involving the paired compounds entacapone ("non-liver toxic drug") and tolcapone ("hepatotoxic drug"). Molecular analysis of the rat liver and plasma samples, combined with statistical analysis, revealed many similarities and differences between the in vivo biochemical effects of the two drugs. Six hundred and ninety-five genes and 61 pathways were selected based on the classification scheme. Of the 61 pathways, 5 were specific to treatment with tolcapone. Two of the 12 animals in the tolcapone group were found to have high ALT, AST, or TBIL levels. The gene Vars2 (valyl-tRNA synthetase 2) was identified in both animals and the pathway to which it belongs, the aminoacyl-tRNA biosynthesis pathway, was one of the three most significant tolcapone-specific pathways identified.


Subject(s)
Benzophenones/toxicity , Catechols/toxicity , Chemical and Drug Induced Liver Injury/etiology , Nitriles/toxicity , Nitrophenols/toxicity , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Benzophenones/chemistry , Bilirubin/metabolism , Biomarkers/metabolism , Catechols/chemistry , Chemical and Drug Induced Liver Injury/metabolism , Gene Regulatory Networks , Liver/metabolism , Male , Nitriles/chemistry , Nitrophenols/chemistry , RNA, Transfer, Amino Acyl/biosynthesis , Rats , Tolcapone
5.
J Proteome Res ; 10(1): 34-45, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20936781

ABSTRACT

A quantitative proteomics workflow was implemented that provides extended plasma protein coverage by extensive protein depletion in combination with the sensitivity and breadth of analysis of two-dimensional LC-MS/MS shotgun analysis. Abundant proteins were depleted by a two-stage process using IgY and Supermix depletion columns in series. Samples are then extensively fractionated by two-dimensional chromatography with fractions directly deposited onto MALDI plates. Decoupling sample fractionation from mass spectrometry facilitates a targeted MS/MS precursor selection strategy that maximizes measurement of a consistent set of peptides across experiments. Multiplexed stable isotope labeling provides quantification relative to a common reference sample and ensures an identical set of peptides measured in the set of samples (set of eight) combined in a single experiment. The more extensive protein depletion provided by the addition of the Supermix column did not compromise overall reproducibility of the measurements or the ability to reliably detect changes in protein levels between samples. The implementation of this workflow is presented for a case study aimed at generating molecular signatures for prediction of first heart attack.


Subject(s)
Blood Proteins , Chromatography, Affinity/methods , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Aged , Aged, 80 and over , Biomarkers , Blood Proteins/analysis , Blood Proteins/chemistry , Blood Proteins/isolation & purification , Female , Humans , Immunoassay , Immunoglobulins/metabolism , Isotope Labeling , Male , Middle Aged , Myocardial Infarction/metabolism , Reproducibility of Results
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(24): 2557-65, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19615953

ABSTRACT

The process of drug metabolite identification is extremely important for drug efficacy, safety and pharmacokinetics. The traditional method usually involves using a drug with a radioactive labeled nuclei and/or isolating major drug metabolites by HPLC before applying MS and NMR analyses, which requires trained specialists to handle the radioactive compounds and is time consuming for offline-HPLC separation. A method using mass spectrometry-based metabonomics combined with multivariate statistical analysis was applied to rapidly identify metabolite profiles of tolcapone, a catechol-O-methyl transferase inhibitor for Parkinson's disease treatment. The tolcapone metabolites were identified based on the accurate mass measurement (<3 ppm) and MS(2) mass spectrum. In total, 16 tolcapone metabolites were detected and identified, 6 of which have not been reported previously. Our results indicate that the method has the capability to accelerate the process of identifying drug metabolites, ultimately reduce drug development costs, and make the process safer without requiring a drug with radioactive nuclei. Most importantly, the assay can detect the major and minor drug metabolites in a global view. Furthermore, since tolcapone has been associated with idiosyncratic drug induced liver toxicity the rapid detection of tolcapone-related metabolites can provide mechanistic toxicity information related to drug metabolism and the formation of reactive drug metabolites.


Subject(s)
Benzophenones/urine , Catechol O-Methyltransferase Inhibitors , Chromatography, High Pressure Liquid/methods , Enzyme Inhibitors/urine , Mass Spectrometry/methods , Metabolomics , Nitrophenols/urine , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Tolcapone
7.
Toxicol Pathol ; 37(1): 52-64, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19171931

ABSTRACT

Drug-induced liver injury (DILI) is the primary adverse event that results in withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in development. The Liver Toxicity Biomarker Study (LTBS) is an innovative approach to investigate DILI because it compares molecular events produced in vivo by compound pairs that (a) are similar in structure and mechanism of action, (b) are associated with few or no signs of liver toxicity in preclinical studies, and (c) show marked differences in hepatotoxic potential. The LTBS is a collaborative preclinical research effort in molecular systems toxicology between the National Center for Toxicological Research and BG Medicine, Inc., and is supported by seven pharmaceutical companies and three technology providers. In phase I of the LTBS, entacapone and tolcapone were studied in rats to provide results and information that will form the foundation for the design and implementation of phase II. Molecular analysis of the rat liver and plasma samples combined with statistical analyses of the resulting datasets yielded marker analytes, illustrating the value of the broad-spectrum, molecular systems analysis approach to studying pharmacological or toxicological effects.


Subject(s)
Antiparkinson Agents/toxicity , Benzophenones/toxicity , Biomarkers/metabolism , Catechols/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Liver/metabolism , Nitriles/toxicity , Nitrophenols/toxicity , Animals , Antiparkinson Agents/pharmacokinetics , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Female , Gene Expression/drug effects , Liver/drug effects , Male , Metabolomics , Oligonucleotide Array Sequence Analysis , Proteomics , Rats , Rats, Sprague-Dawley , Tolcapone
8.
Mol Biosyst ; 4(3): 249-59, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18437268

ABSTRACT

High-throughput biomolecular profiling techniques such as transcriptomics, proteomics and metabolomics are increasingly being used in in vivo studies to recognize and characterize effects of xenobiotics on organs and systems. Of particular interest are biomarkers of treatment-related effects which are detectable in easily accessible biological fluids such as blood. A fundamental challenge in such biomarker studies is selecting among the plethora of biomolecular changes induced by a compound and revealed by molecular profiling, to identify biomarkers which are exclusively or predominantly due to specific processes. In this work we present a cross-compartment correlation network approach, involving no a priori supervision or design, to integrate proteomic, metabolomic and transcriptomic data for selecting circulating biomarkers. The case study we present is the identification of biomarkers of drug-induced hepatic toxicity effects in a rodent model. Biomolecular profiling of both blood plasma and liver tissue from Wistar Hannover rats administered a toxic compound yielded many hundreds of statistically significant molecular changes. We exploited drug-induced correlations between blood plasma analytes and liver tissue molecules across study animals in order to nominate selected plasma molecules as biomarkers of drug-induced hepatic alterations of lipid metabolism and urea cycle processes.


Subject(s)
Systems Biology , Animals , Biomarkers , Glycosyltransferases/metabolism , Lipids/blood , Liver/enzymology , Male , Ornithine/blood , Rats , Rats, Wistar
9.
J Am Soc Mass Spectrom ; 16(7): 1181-91, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15922621

ABSTRACT

An algorithm is presented for the generation of a reliable peptide component peak table from liquid chromatography-mass spectrometry (LC-MS) and subsequent quantitative analysis of stable isotope coded peptide samples. The method uses chemical noise filtering, charge state fitting, and deisotoping toward improved analysis of complex peptide samples. Overlapping peptide signals in mass spectra were deconvoluted by correlation with modeled peptide isotopic peak profiles. Isotopic peak profiles for peptides were generated in silico from a protein database producing reference model distributions. Doublets of heavy and light labeled peak clusters were identified and compared to provide differential quantification of pairs of stable isotope coded peptides. Algorithms were evaluated using peptides from digests of a single protein and a seven-protein mixture that had been differentially coded with stable isotope labeling agents and mixed in known ratios. The experimental results correlated well with known mixing ratios.


Subject(s)
Isotope Labeling/methods , Peptide Mapping/methods , Peptides/analysis , Proteomics/methods , Algorithms , Amino Acid Sequence , Animals , Cattle , Chickens , Horses , Humans , Molecular Sequence Data , Molecular Weight , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...