Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352614

ABSTRACT

Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.

2.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37961099

ABSTRACT

The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.

3.
Schizophr Res ; 261: 1-5, 2023 11.
Article in English | MEDLINE | ID: mdl-37678144

ABSTRACT

BACKGROUND: Caudate functional abnormalities have been identified as one critical neural substrate underlying sensory gating impairments that lead to auditory phantom hallucinations in both patients with schizophrenia (SZ) and tinnitus, characterized by the perception of internally generated sounds in the absence of external environmental auditory stimuli. In this study, we tested the hypothesis as to whether functional connectivity abnormalities in distinct caudate subdivisions implicated in sensory gating and auditory phantom percepts in tinnitus, which are currently being localized for neuromodulation targeting using deep brain stimulation techniques, would be associated with auditory phantom hallucination severity in SZ. METHODS: Twenty five SZ and twenty eight demographically-matched healthy control (HC) participants, completed this fMRI resting-state study and clinical assessments. RESULTS: Between-group seed-to-voxel analyses revealed only one region, the caudate anterior head, which showed reduced functional connectivity with the thalamus that survived whole-brain multiple comparison corrections. Importantly, connectivity between the caudate anterior head with thalamus negatively correlated with hallucination severity. CONCLUSIONS: In the present study, we deliver the first evidence of caudate subdivision specificity for the neural pathophysiology underlying hallucinations in schizophrenia within a sensory gating framework that has been developed for auditory phantoms in patients with tinnitus. Our findings provide transdiagnostic convergent evidence for the role of the caudate in the gating of auditory phantom hallucinations, observed across patients with SZ and tinnitus by specifying the anterior caudate division is key to mediation of hallucinations, and creating a path towards personalized treatment approaches to arrest auditory phantom hallucinations from reaching perceptual awareness.


Subject(s)
Schizophrenia , Tinnitus , Humans , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Tinnitus/complications , Hallucinations/etiology , Hallucinations/complications , Brain , Brain Mapping , Magnetic Resonance Imaging
4.
Hum Brain Mapp ; 44(14): 4833-4847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37516916

ABSTRACT

Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.


Subject(s)
Aphasia, Primary Progressive , Primary Progressive Nonfluent Aphasia , Humans , Aphasia, Primary Progressive/diagnostic imaging , Neurophysiology , Magnetic Resonance Imaging , Gray Matter/pathology , Atrophy/pathology , Primary Progressive Nonfluent Aphasia/diagnostic imaging , Primary Progressive Nonfluent Aphasia/complications , Primary Progressive Nonfluent Aphasia/pathology
5.
Front Hum Neurosci ; 17: 1077923, 2023.
Article in English | MEDLINE | ID: mdl-36875232

ABSTRACT

Introduction: The cognitive and psychotic symptoms in patients with schizophrenia (SZ) are thought to result from disrupted brain network connectivity. Methods: We capitalize on the high spatiotemporal resolution of magnetoencephalography imaging (MEG) to record spontaneous neuronal activity in resting state networks in 21 SZ compared with 21 healthy controls (HC). Results: We found that SZ showed significant global disrupted functional connectivity in delta-theta (2-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz) frequencies, compared to HC. Disrupted global connectivity in alpha frequencies with bilateral frontal cortices was associated with more severe clinical psychopathology (i.e., positive psychotic symptoms). Specifically, aberrant connectivity in beta frequencies between the left primary auditory cortex and cerebellum, was linked to greater hallucination severity in SZ. Disrupted connectivity in delta-theta frequencies between the medial frontal and left inferior frontal cortex was associated with impaired cognition. Discussion: The multivariate techniques employed in the present study highlight the importance of applying our source reconstruction techniques which leverage the high spatial localization abilities of MEG for estimating neural source activity using beamforming methods such as SAM (synthetic aperture morphometry) to reconstruct the source of brain activity, together with functional connectivity assessments, assayed with imaginary coherence metrics, to delineate how neurophysiological dysconnectivity in specific oscillatory frequencies between distinct regions underlie the cognitive and psychotic symptoms in SZ. The present findings employ powerful techniques in spatial and time-frequency domains to provide potential neural biomarkers underlying neuronal network dysconnectivity in SZ that will inform the development of innovations in future neuromodulation treatment development.

6.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36595270

ABSTRACT

Objective:Subjective tinnitus is an auditory phantom perceptual disorder without an objective biomarker. Fast and efficient diagnostic tools will advance clinical practice by detecting or confirming the condition, tracking change in severity, and monitoring treatment response. Motivated by evidence of subtle anatomical, morphological, or functional information in magnetic resonance images of the brain, we examine data-driven machine learning methods for joint tinnitus classification (tinnitus or no tinnitus) and tinnitus severity prediction.Approach:We propose a deep multi-task multimodal framework for tinnitus classification and severity prediction using structural MRI (sMRI) data. To leverage complementary information multimodal neuroimaging data, we integrate two modalities of three-dimensional sMRI-T1 weighted (T1w) and T2 weighted (T2w) images. To explore the key components in the MR images that drove task performance, we segment both T1w and T2w images into three different components-cerebrospinal fluid, grey matter and white matter, and evaluate performance of each segmented image.Main results:Results demonstrate that our multimodal framework capitalizes on the information across both modalities (T1w and T2w) for the joint task of tinnitus classification and severity prediction.Significance:Our model outperforms existing learning-based and conventional methods in terms of accuracy, sensitivity, specificity, and negative predictive value.


Subject(s)
Tinnitus , Humans , Tinnitus/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging , Gray Matter
7.
Schizophr Bull ; 48(6): 1384-1393, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36073155

ABSTRACT

BACKGROUND AND HYPOTHESIS: Prior research has shown that patients with schizophrenia (SZ) show disruption in brain network connectivity that is thought to underlie their cognitive and psychotic symptoms. However, most studies examining functional network disruption in schizophrenia have focused on the temporally correlated coupling of the strength of network connections. Here, we move beyond correlative metrics to assay causal computations of connectivity changes in directed neural information flow, assayed from a neural source to a target in SZ. STUDY DESIGN: This study describes a whole-brain magnetoencephalography-imaging approach to examine causal computations of connectivity changes in directed neural information flow between brain regions during resting states, quantified by phase-transfer entropy (PTE) metrics, assayed from a neural source to an endpoint, in 21 SZ compared with 21 healthy controls (HC), and associations with cognitive and clinical psychotic symptoms in SZ. STUDY RESULTS: We found that SZ showed significant disruption in information flow in alpha (8-12 Hz) and beta (12-30 Hz) frequencies, compared to HC. Reduced information flow in alpha frequencies from the precuneus to the medio-ventral occipital cortex was associated with more severe clinical psychopathology (ie, positive psychotic symptoms), while reduced information flow between insula and middle temporal gyrus was associated with worsening cognitive symptoms. CONCLUSIONS: The present findings highlight the importance of delineating dysfunction in neural information flow in specific oscillatory frequencies between distinct regions that underlie the cognitive and psychotic symptoms in SZ, and provide potential neural biomarkers that could lead to innovations in future neuromodulation treatment development.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Brain/diagnostic imaging , Magnetoencephalography
8.
Front Psychol ; 13: 887591, 2022.
Article in English | MEDLINE | ID: mdl-35814055

ABSTRACT

Primary progressive aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. Three variants are recognized: logopenic (lvPPA), associated with phonology and/or short-term verbal memory deficits accompanied by left temporo-parietal atrophy; semantic (svPPA), associated with semantic deficits and anterior temporal lobe (ATL) atrophy; non-fluent (nfvPPA) associated with grammar and/or speech-motor deficits and inferior frontal gyrus (IFG) atrophy. Here, we set out to investigate whether the three variants of PPA can be dissociated based on error patterns in a single language task. We recruited 21 lvPPA, 28 svPPA, and 24 nfvPPA patients, together with 31 healthy controls, and analyzed their performance on an auditory noun-to-verb generation task, which requires auditory analysis of the input, access to and selection of relevant lexical and semantic knowledge, as well as preparation and execution of speech. Task accuracy differed across the three variants and controls, with lvPPA and nfvPPA having the lowest and highest accuracy, respectively. Critically, machine learning analysis of the different error types yielded above-chance classification of patients into their corresponding group. An analysis of the error types revealed clear variant-specific effects: lvPPA patients produced the highest percentage of "not-a-verb" responses and the highest number of semantically related nouns (production of baseball instead of throw to noun ball); in contrast, svPPA patients produced the highest percentage of "unrelated verb" responses and the highest number of light verbs (production of take instead of throw to noun ball). Taken together, our findings indicate that error patterns in an auditory verb generation task are associated with the breakdown of different neurocognitive mechanisms across PPA variants. Specifically, they corroborate the link between temporo-parietal regions with lexical processing, as well as ATL with semantic processes. These findings illustrate how the analysis of pattern of responses can help PPA phenotyping and heighten diagnostic sensitivity, while providing insights on the neural correlates of different components of language.

9.
Neuroimage ; 258: 119369, 2022 09.
Article in English | MEDLINE | ID: mdl-35700943

ABSTRACT

Accurate reconstruction of the spatio-temporal dynamics of event-related cortical oscillations across human brain regions is an important problem in functional brain imaging and human cognitive neuroscience with magnetoencephalography (MEG) and electroencephalography (EEG). The problem is challenging not only in terms of localization of complex source configurations from sensor measurements with unknown noise and interference but also for reconstruction of transient event-related time-frequency dynamics of cortical oscillations. We recently proposed a robust empirical Bayesian algorithm for simultaneous reconstruction of complex brain source activity and noise covariance, in the context of evoked and resting-state data. In this paper, we expand upon this empirical Bayesian framework for optimal reconstruction of event-related time-frequency dynamics of regional cortical oscillations, referred to as time-frequency Champagne (TFC). This framework enables imaging of five-dimensional (space, time, and frequency) event-related brain activity from M/EEG data, and can be viewed as a time-frequency optimized adaptive Bayesian beamformer. We evaluate TFC in both simulations and several real datasets, with comparisons to benchmark standards - variants of time-frequency optimized adaptive beamformers (TFBF) as well as the sLORETA algorithm. In simulations, we demonstrate several advantages in estimating time-frequency cortical oscillatory dynamics compared to benchmarks. With real MEG data, we demonstrate across many datasets that the proposed approach is robust to highly correlated brain activity and low SNR data, and is able to accurately reconstruct cortical dynamics with data from just a few epochs.


Subject(s)
Brain Mapping , Magnetoencephalography , Algorithms , Bayes Theorem , Brain/physiology , Brain Mapping/methods , Electroencephalography/methods , Humans , Magnetoencephalography/methods
10.
Brain Commun ; 4(2): fcac031, 2022.
Article in English | MEDLINE | ID: mdl-35356032

ABSTRACT

Laryngeal dystonia is a debilitating disorder of voicing in which the laryngeal muscles are intermittently in spasm resulting in involuntary interruptions during speech. The central pathophysiology of laryngeal dystonia, underlying computational impairments in vocal motor control, remains poorly understood. Although prior imaging studies have found aberrant activity in the CNS during phonation in patients with laryngeal dystonia, it is not known at what timepoints during phonation these abnormalities emerge and what function may be impaired. To investigate this question, we recruited 22 adductor laryngeal dystonia patients (15 female, age range = 28.83-72.46 years) and 18 controls (eight female, age range = 27.40-71.34 years). We leveraged the fine temporal resolution of magnetoencephalography to monitor neural activity around glottal movement onset, subsequent voice onset and after the onset of pitch feedback perturbations. We examined event-related beta-band (12-30 Hz) and high-gamma-band (65-150 Hz) neural oscillations. Prior to glottal movement onset, we observed abnormal frontoparietal motor preparatory activity. After glottal movement onset, we observed abnormal activity in the somatosensory cortex persisting through voice onset. Prior to voice onset and continuing after, we also observed abnormal activity in the auditory cortex and the cerebellum. After pitch feedback perturbation onset, we observed no differences between controls and patients in their behavioural responses to the perturbation. But in patients, we did find abnormal activity in brain regions thought to be involved in the auditory feedback control of vocal pitch (premotor, motor, somatosensory and auditory cortices). Our study results confirm the abnormal processing of somatosensory feedback that has been seen in other studies. However, there were several remarkable findings in our study. First, patients have impaired vocal motor activity even before glottal movement onset, suggesting abnormal movement preparation. These results are significant because (i) they occur before movement onset, abnormalities in patients cannot be ascribed to deficits in vocal performance and (ii) they show that neural abnormalities in laryngeal dystonia are more than just abnormal responses to sensory feedback during phonation as has been hypothesized in some previous studies. Second, abnormal auditory cortical activity in patients begins even before voice onset, suggesting abnormalities in setting up auditory predictions before the arrival of auditory feedback at voice onset. Generally, activation abnormalities identified in key brain regions within the speech motor network around various phonation events not only provide temporal specificity to neuroimaging phenotypes in laryngeal dystonia but also may serve as potential therapeutic targets for neuromodulation.

11.
PLoS One ; 17(3): e0257711, 2022.
Article in English | MEDLINE | ID: mdl-35245294

ABSTRACT

Response activation and inhibition are functions fundamental to executive control that are disrupted in Parkinson disease (PD). We used magnetoencephalography to examine event related changes in oscillatory power amplitude, peak latency and frequency in cortical networks subserving these functions and identified abnormalities associated with PD. Participants (N = 18 PD, 18 control) performed a cue/target task that required initiation of an un-cued movement (activation) or inhibition of a cued movement. Reaction times were variable but similar across groups. Task related responses in gamma, alpha, and beta power were found across cortical networks including motor cortex, supplementary and pre- supplementary motor cortex, posterior parietal cortex, prefrontal cortex and anterior cingulate. PD-related changes in power and latency were noted most frequently in the beta band, however, abnormal power and delayed peak latency in the alpha band in the pre-supplementary motor area was suggestive of a compensatory mechanism. PD peak power was delayed in pre-supplementary motor area, motor cortex, and medial frontal gyrus only for activation, which is consistent with deficits in un-cued (as opposed to cued) movement initiation characteristic of PD.


Subject(s)
Motor Cortex , Parkinson Disease , Cues , Humans , Inhibition, Psychological , Movement/physiology
12.
Hum Brain Mapp ; 43(2): 633-646, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34609038

ABSTRACT

Neuromodulation treatment effect size for bothersome tinnitus may be larger and more predictable by adopting a target selection approach guided by personalized striatal networks or functional connectivity maps. Several corticostriatal mechanisms are likely to play a role in tinnitus, including the dorsal/ventral striatum and the putamen. We examined whether significant tinnitus treatment response by deep brain stimulation (DBS) of the caudate nucleus may be related to striatal network increased functional connectivity with tinnitus networks that involve the auditory cortex or ventral cerebellum. The first study was a cross-sectional 2-by-2 factorial design (tinnitus, no tinnitus; hearing loss, normal hearing, n = 68) to define cohort level abnormal functional connectivity maps using high-field 7.0 T resting-state fMRI. The second study was a pilot case-control series (n = 2) to examine whether tinnitus modulation response to caudate tail subdivision stimulation would be contingent on individual level striatal connectivity map relationships with tinnitus networks. Resting-state fMRI identified five caudate subdivisions with abnormal cohort level functional connectivity maps. Of those, two connectivity maps exhibited increased connectivity with tinnitus networks-dorsal caudate head with Heschl's gyrus and caudate tail with the ventral cerebellum. DBS of the caudate tail in the case-series responder resulted in dramatic reductions in tinnitus severity and loudness, in contrast to the nonresponder who showed no tinnitus modulation. The individual level connectivity map of the responder was in alignment with the cohort expectation connectivity map, where the caudate tail exhibited increased connectivity with tinnitus networks, whereas the nonresponder individual level connectivity map did not.


Subject(s)
Auditory Cortex/physiopathology , Caudate Nucleus/physiopathology , Cerebellum/physiopathology , Connectome , Deep Brain Stimulation , Hearing Loss/physiopathology , Nerve Net/physiopathology , Tinnitus/physiopathology , Tinnitus/therapy , Adult , Aged , Auditory Cortex/diagnostic imaging , Case-Control Studies , Caudate Nucleus/diagnostic imaging , Cerebellum/diagnostic imaging , Cross-Sectional Studies , Female , Hearing Loss/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Tinnitus/diagnostic imaging
13.
Brain ; 145(2): 744-753, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34919638

ABSTRACT

Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease. Using magnetoencephalography (MEG) at rest, we studied 30 Alzheimer's disease patients without subclinical epileptiform activity, 20 Alzheimer's disease patients with subclinical epileptiform activity and 35 age-matched controls. Presence of subclinical epileptiform activity was assessed in patients with Alzheimer's disease by long-term video-EEG and a 1-h resting MEG with simultaneous EEG. Using the resting-state source-space reconstructed MEG signal, in patients and controls we computed the global imaginary coherence in alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillatory frequencies. We found that Alzheimer's disease patients with subclinical epileptiform activity have greater reductions in alpha imaginary coherence and greater enhancements in delta-theta imaginary coherence than Alzheimer's disease patients without subclinical epileptiform activity, and that these changes can distinguish between Alzheimer's disease patients with subclinical epileptiform activity and Alzheimer's disease patients without subclinical epileptiform activity with high accuracy. Finally, a principal component regression analysis showed that the variance of frequency-specific neuronal synchrony predicts longitudinal changes in Mini-Mental State Examination in patients and controls. Our results demonstrate that quantitative neurophysiological measures are sensitive biomarkers of network hyperexcitability and can be used to improve diagnosis and to select appropriate patients for the right therapy in the next-generation clinical trials. The current results provide an integrative framework for investigating network hyperexcitability and network dysfunction together with cognitive and clinical correlates in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Brain , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , Electroencephalography/methods , Humans , Magnetoencephalography
14.
Laryngoscope ; 131(8): 1863-1868, 2021 08.
Article in English | MEDLINE | ID: mdl-33811641

ABSTRACT

OBJECTIVES: To investigate neuroanatomic volume differences in tinnitus and hearing loss. STUDY DESIGN: Cross-sectional. METHODS: Sixteen regions of interest (ROIs) in adults (43 male, 29 female) were examined using 3Tesla structural magnetic resonance imaging in four cohorts: 1) tinnitus with moderate hearing loss (N = 31), 2) moderate hearing loss only (N = 15), 3) tinnitus with normal hearing (N = 17), and 4) normal hearing only (N = 13). ROI volumes were corrected for brain size, age, and sex variations. Analysis of covariance (ANCOVA) and post hoc Tukey's test were used to isolate the effects of tinnitus and hearing loss on volume differences. Effect sizes were calculated as the fraction of total variance (η2 ) in ANCOVA models and percent of mean volume difference relative to mean total volume. RESULTS: The four cohort ANCOVA revealed tinnitus and hearing loss cohorts to have increased volume in the corona radiata (η2  = 0.192; P = .0018) and decreased volume in the nucleus accumbens (η2  = 0.252; P < .0001), caudate nucleus (η2  = 0.188; P = .002), and inferior fronto-occipital fasciculus (η2  = 0.250; P = .0001). Tinnitus with normal hearing showed decreased volume in the nucleus accumbens (22.0%; P = .001) and inferior fronto-occipital fasciculus (18.1%; P = .002), and hearing loss only showed increased volume in the corona radiata (10.7%; P = .01) and decreased volume in the nucleus accumbens (22.1%; P = .001), caudate nucleus (16.1%; P = .004), and inferior fronto-occipital fasciculus (18.3%; P = .003). CONCLUSION: Tinnitus and hearing loss have overlapping effects on neurovolumetric alterations, especially impacting the nucleus accumbens and inferior fronto-occipital fasciculus. Neurovolumetric studies on tinnitus or hearing loss can be more complete by accounting for those two clinical dimensions separately and jointly. LEVEL OF EVIDENCE: 3 Laryngoscope, 131:1863-1868, 2021.


Subject(s)
Brain/pathology , Hearing Loss/pathology , Magnetic Resonance Imaging , Nerve Net/pathology , Tinnitus/pathology , Adult , Aged , Analysis of Variance , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Hearing Loss/diagnostic imaging , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/pathology , Occipital Lobe/diagnostic imaging , Occipital Lobe/pathology , Organ Size , Tinnitus/diagnostic imaging
16.
J Brain Res ; 4(3)2021.
Article in English | MEDLINE | ID: mdl-38533396

ABSTRACT

Prior studies have shown that the medial prefrontal cortex (mPFC) represents one neural substrate that mediates judgments of self-agency (i.e., the awareness that 'I am the originator of my actions'). Patients with schizophrenia (SZ) manifest cardinal self-agency deficits that contribute to debilitating psychotic symptoms (e.g. hallucinations) and distort reality monitoring. This is the first study in which we examine across 2 SZ samples, the mPFC site that underlies self-agency deficits during an explicit reality-monitoring task (i.e., while subjects distinguish self-generated information from externally-derived information) in one SZ sample, and link intrinsic functional connectivity (iFC) during rest within this a priori task-evoked self-agency seed with hallucination symptoms in a different SZ sample. In particular, we examined the iFC between the mPFC site that underlies self-agency deficits with all other brain regions in SZ using resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data were collected from 32 SZ and 28 age, gender, and education-matched healthy control (HC) subjects. Functional connectivity maps were computed for each subject and compared between the HC and SZ groups. Within-group and between-group analyses revealed that aberrant iFC in this a priori-defined mPFC 'self-agency seed' predicted hallucination severity. The present findings reveal that the neural aberrations in this mPFC site represents one cardinal biomarker that underlies explicit self-agency deficits during a reality-monitoring task in one SZ sample that generalized to aberrant iFC differences in a different SZ sample and predicted worsening psychotic hallucinatory experiences. This region may represent a key neurobiological target for treatment avenues to improve hallucinatory symptoms.

17.
Front Neurosci ; 14: 710, 2020.
Article in English | MEDLINE | ID: mdl-32982658

ABSTRACT

Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG) is an open-source MATLAB-based toolbox for the analysis and reconstruction of magnetoencephalography/electroencephalography data in source space. NUTMEG includes a variety of options for the user in data import, preprocessing, source reconstruction, and functional connectivity. A group analysis toolbox allows the user to run a variety of inferential statistics on their data in an easy-to-use GUI-driven format. Importantly, NUTMEG features an interactive five-dimensional data visualization platform. A key feature of NUTMEG is the availability of a large menu of interference cancelation and source reconstruction algorithms. Each NUTMEG operation acts as a stand-alone MATLAB function, allowing the package to be easily adaptable and scripted for the more advanced user for interoperability with other software toolboxes. Therefore, NUTMEG enables a wide range of users access to a complete "sensor-to- source-statistics" analysis pipeline.

18.
J Neurosci ; 40(40): 7702-7713, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32900834

ABSTRACT

Theta-band (∼6 Hz) rhythmic activity within and over the medial PFC ("midfrontal theta") has been identified as a distinctive signature of "response conflict," the competition between multiple actions when only one action is goal-relevant. Midfrontal theta is traditionally conceptualized and analyzed under the assumption that it is a unitary signature of conflict that can be uniquely identified at one electrode (typically FCz). Here we recorded simultaneous MEG and EEG (total of 328 sensors) in 9 human subjects (7 female) and applied a feature-guided multivariate source-separation decomposition to determine whether conflict-related midfrontal theta is a unitary or multidimensional feature of the data. For each subject, a generalized eigendecomposition yielded spatial filters (components) that maximized the ratio between theta and broadband activity. Components were retained based on significance thresholding and midfrontal EEG topography. All of the subjects individually exhibited multiple (mean 5.89, SD 2.47) midfrontal components that contributed to sensor-level midfrontal theta power during the task. Component signals were temporally uncorrelated and asynchronous, suggesting that each midfrontal theta component was unique. Our findings call into question the dominant notion that midfrontal theta represents a unitary process. Instead, we suggest that midfrontal theta spans a multidimensional space, indicating multiple origins, but can manifest as a single feature at the sensor level because of signal mixing.SIGNIFICANCE STATEMENT "Midfrontal theta" is a rhythmic electrophysiological signature of the competition between multiple response options. Midfrontal theta is traditionally considered to reflect a single process. However, this assumption could be erroneous because of "mixing" (multiple sources contributing to the activity recorded at a single electrode). We investigated the dimensionality of midfrontal theta by applying advanced multivariate analysis methods to a multimodal MEG/EEG dataset. We identified multiple topographically overlapping neural sources that drove response conflict-related midfrontal theta. Midfrontal theta thus reflects multiple uncorrelated signals that manifest with similar EEG scalp projections. In addition to contributing to the cognitive control literature, we demonstrate both the feasibility and the necessity of signal demixing to understand the narrowband neural dynamics underlying cognitive processes.


Subject(s)
Conflict, Psychological , Theta Rhythm , Adult , Female , Frontal Lobe/physiology , Humans , Magnetoencephalography/methods , Male
19.
Brain ; 143(8): 2545-2560, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32789455

ABSTRACT

Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.


Subject(s)
Aphasia, Primary Progressive/physiopathology , Brain Mapping/methods , Brain/physiopathology , Reading , Aged , Aphasia, Primary Progressive/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Middle Aged
20.
Front Hum Neurosci ; 14: 105, 2020.
Article in English | MEDLINE | ID: mdl-32499685

ABSTRACT

Magnetoencephalographic imaging (MEGI) offers a non-invasive alternative for defining preoperative language lateralization in neurosurgery patients. MEGI indeed can be used for accurate estimation of language lateralization with a complex language task - auditory verb generation. However, since language function may vary considerably in patients with focal lesions, it is important to optimize MEGI for estimation of language function with other simpler language tasks. The goal of this study was to optimize MEGI laterality analyses for two such simpler language tasks that can have compliance from those with impaired language function: a non-word repetition (NWR) task and a picture naming (PN) task. Language lateralization results for these two tasks were compared to the verb-generation (VG) task. MEGI reconstruction parameters (regions and time windows) for NWR and PN were first defined in a presurgical training cohort by benchmarking these against laterality indices for VG. Optimized time windows and regions of interest (ROIs) for NWR and PN were determined by examining oscillations in the beta band (12-30 Hz) a marker of neural activity known to be concordant with the VG laterality index (LI). For NWR, additional ROIs include areas MTG/ITG and for both NWR and PN, the postcentral gyrus was included in analyses. Optimal time windows for NWR were defined as 650-850 ms (stimulus-locked) and -350 to -150 ms (response-locked) and for PN -450 to -250 ms (response-locked). To verify the optimal parameters defined in our training cohort for NWR and PN, we examined an independent validation cohort (n = 30 for NWR, n = 28 for PN) and found high concordance between VG laterality and PN laterality (82%) and between VG laterality and NWR laterality (87%). Finally, in a test cohort (n = 8) that underwent both the intracarotid amobarbital procedure (IAP) test and MEG for VG, NWR, and PN, we identified excellent concordance (100%) with IAP for VG + NWR + PN composite LI, high concordance for PN alone (87.5%), and moderate concordance for NWR alone (66.7%). These findings provide task options for non-invasive language mapping with MEGI that can be calibrated for language abilities of individual patients. Results also demonstrate that more accurate estimates can be obtained by combining laterality estimates obtained from multiple tasks. MEGI.

SELECTION OF CITATIONS
SEARCH DETAIL
...