Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 90(16): 9761-9768, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30008222

ABSTRACT

Environmental transmission electron microscopy was employed to probe transformations in the size, morphology, and composition of individual atmospheric particles as a function of temperature. Two different heating devices were used and calibrated in this work: a furnace heater and a Micro Electro Mechanical System heater. The temperature calibration used sublimation temperatures of NaCl, glucose, and ammonium sulfate particles, and the melting temperature of tin. Volatilization of Suwanee River Fulvic Acid was further used to validate the calibration up to 800 °C. The calibrated furnace holder was used to examine both laboratory-generated secondary organic aerosol particles and field-collected atmospheric particles. Chemical analysis by scanning transmission X-ray microscopy and near-edge fine-structure spectroscopy of the organic particles at different heating steps showed that above 300 °C particle volatilization was accompanied by charring. These methods were then applied to ambient particles collected in the central Amazon region. Distinct categories of particles differed in their volatilization response to heating. Spherical, more-viscous particles lost less volume during heating than particles that spread on the imaging substrate during impaction, due to either being liquid upon impaction or lower viscosity. This methodology illustrates a new analytical approach to accurately measure the volume fraction remaining for individually tracked atmospheric particles at elevated temperatures.

2.
Phys Chem Chem Phys ; 18(13): 8785-93, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26685987

ABSTRACT

This work explores the effect of environmental conditions on the photodegradation rates of atmospherically relevant, photolabile, organic molecules embedded in a film of secondary organic material (SOM). Three types of SOM were studied: α-pinene/O3 SOM (PSOM), limonene/O3 SOM (LSOM), and aged limonene/O3 obtained by exposure of LSOM to ammonia (brown LSOM). PSOM and LSOM were impregnated with 2,4-dinitrophenol (2,4-DNP), an atmospherically relevant molecule that photodegrades faster than either PSOM or LSOM alone, to serve as a probe of SOM matrix effects on photochemistry. Brown LSOM contains an unidentified chromophore that absorbs strongly at 510 nm and photobleaches upon irradiation. This chromophore served as a probe molecule for the brown LSOM experiments. In all experiments, either the temperature or relative humidity (RH) surrounding the SOM films was varied. The extent of photochemical reaction in the samples was monitored using UV-vis absorption spectroscopy. For all three model systems examined, the observed photodegradation rates were slower at lower temperatures and lower RH, conditions that make SOM more viscous. Additionally, the activation energies for photodegradation of each system were positively correlated with the viscosity of the SOM matrix as measured in poke-flow experiments. These activation energies were calculated to be 50, 24, and 17 kJ mol(-1) for 2,4-DNP in PSOM, 2,4-DNP in LSOM, and the chromophore in brown LSOM, respectively, and PSOM was found to be the most viscous of the three. These results suggest that the increased viscosity is hindering the motion of the molecules in SOM and is slowing down their respective photochemical reactions.


Subject(s)
Aerosols , Organic Chemicals/chemistry , Viscosity , Spectrophotometry, Ultraviolet
3.
Proc Natl Acad Sci U S A ; 111(38): 13780-5, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201953

ABSTRACT

This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts.

SELECTION OF CITATIONS
SEARCH DETAIL