Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4778, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862479

ABSTRACT

Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).


Subject(s)
Brain , Neurons , Space Flight , Animals , Mice , Female , Brain/metabolism , Brain/pathology , Neurons/metabolism , Transcriptome , Neurogenesis , Single-Cell Analysis , Mice, Inbred C57BL , Synaptic Transmission , Weightlessness/adverse effects , Astrocytes/metabolism , Oxidative Stress , Gene Expression Profiling , Multiomics
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835027

ABSTRACT

Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.


Subject(s)
Alzheimer Disease , Male , Mice , Female , Humans , Animals , Alzheimer Disease/pathology , Protons , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Radiation , Hippocampus/metabolism , Mutation , Mice, Transgenic
3.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948098

ABSTRACT

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


Subject(s)
Alzheimer Disease , Behavior, Animal/radiation effects , Gamma Rays , Genotype , Iron Radioisotopes , Presenilin-1 , Sex Characteristics , Spatial Memory/radiation effects , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Male , Mice , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Time Factors
4.
Sci Rep ; 9(1): 12118, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431669

ABSTRACT

Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer's disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-ß levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Brain/pathology , Brain/radiation effects , Iron Radioisotopes/adverse effects , Space Flight , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Behavior, Animal/radiation effects , Brain/physiopathology , Disease Models, Animal , Dose-Response Relationship, Radiation , Female , Humans , Inflammation/pathology , Inflammation/physiopathology , Learning/radiation effects , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Microglia/physiology , Microglia/radiation effects , Motor Activity/radiation effects , Presenilin-1/genetics , Presenilin-1/metabolism , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL