Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 107: 129779, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729317

ABSTRACT

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.

2.
Nature ; 627(8002): 204-211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383787

ABSTRACT

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Subject(s)
Nuclear Proteins , Transcription Factors , Proteolysis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Nat Commun ; 14(1): 7908, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036533

ABSTRACT

Targeted proteasomal and autophagic protein degradation, often employing bifunctional modalities, is a new paradigm for modulation of protein function. In an attempt to explore protein degradation by means of autophagy we combine arylidene-indolinones reported to bind the autophagy-related LC3B-protein and ligands of the PDEδ lipoprotein chaperone, the BRD2/3/4-bromodomain containing proteins and the BTK- and BLK kinases. Unexpectedly, the resulting bifunctional degraders do not induce protein degradation by means of macroautophagy, but instead direct their targets to the ubiquitin-proteasome system. Target and mechanism identification reveal that the arylidene-indolinones covalently bind DCAF11, a substrate receptor in the CUL4A/B-RBX1-DDB1-DCAF11 E3 ligase. The tempered α, ß-unsaturated indolinone electrophiles define a drug-like DCAF11-ligand class that enables exploration of this E3 ligase in chemical biology and medicinal chemistry programs. The arylidene-indolinone scaffold frequently occurs in natural products which raises the question whether E3 ligand classes can be found more widely among natural products and related compounds.


Subject(s)
Biological Products , Cullin Proteins , Oxindoles , Ligands , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Biological Products/pharmacology , Ubiquitination
4.
Elife ; 122023 08 25.
Article in English | MEDLINE | ID: mdl-37622993

ABSTRACT

Adaptation of the functional proteome is essential to counter pathogens during infection, yet precisely timed degradation of these response proteins after pathogen clearance is likewise key to preventing autoimmunity. Interferon regulatory factor 1 (IRF1) plays an essential role as a transcription factor in driving the expression of immune response genes during infection. The striking difference in functional output with other IRFs is that IRF1 also drives the expression of various cell cycle inhibiting factors, making it an important tumor suppressor. Thus, it is critical to regulate the abundance of IRF1 to achieve a 'Goldilocks' zone in which there is sufficient IRF1 to prevent tumorigenesis, yet not too much which could drive excessive immune activation. Using genetic screening, we identified the E3 ligase receptor speckle type BTB/POZ protein (SPOP) to mediate IRF1 proteasomal turnover in human and mouse cells. We identified S/T-rich degrons in IRF1 required for its SPOP MATH domain-dependent turnover. In the absence of SPOP, elevated IRF1 protein levels functionally increased IRF1-dependent cellular responses, underpinning the biological significance of SPOP in curtailing IRF1 protein abundance.


Subject(s)
Gene Expression Regulation , Genes, Regulator , Humans , Animals , Mice , Interferon Regulatory Factor-1/genetics , Acclimatization , Immunologic Factors
5.
Elife ; 122023 08 08.
Article in English | MEDLINE | ID: mdl-37552050

ABSTRACT

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Subject(s)
RNA Interference , RNA, Small Interfering/genetics
6.
Nature ; 599(7885): 491-496, 2021 11.
Article in English | MEDLINE | ID: mdl-34711951

ABSTRACT

Protein expression and turnover are controlled through a complex interplay of transcriptional, post-transcriptional and post-translational mechanisms to enable spatial and temporal regulation of cellular processes. To systematically elucidate such gene regulatory networks, we developed a CRISPR screening assay based on time-controlled Cas9 mutagenesis, intracellular immunostaining and fluorescence-activated cell sorting that enables the identification of regulatory factors independent of their effects on cellular fitness. We pioneered this approach by systematically probing the regulation of the transcription factor MYC, a master regulator of cell growth1-3. Our screens uncover a highly conserved protein, AKIRIN2, that is essentially required for nuclear protein degradation. We found that AKIRIN2 forms homodimers that directly bind to fully assembled 20S proteasomes to mediate their nuclear import. During mitosis, proteasomes are excluded from condensing chromatin and re-imported into newly formed daughter nuclei in a highly dynamic, AKIRIN2-dependent process. Cells undergoing mitosis in the absence of AKIRIN2 become devoid of nuclear proteasomes, rapidly causing accumulation of MYC and other nuclear proteins. Collectively, our study reveals a dedicated pathway controlling the nuclear import of proteasomes in vertebrates and establishes a scalable approach to decipher regulators in essential cellular processes.


Subject(s)
Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , CRISPR-Cas Systems , Cell Line, Tumor , Female , Genes, myc , Humans , Male , Mitosis , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Proteolysis
7.
Nat Methods ; 17(7): 708-716, 2020 07.
Article in English | MEDLINE | ID: mdl-32514112

ABSTRACT

CRISPR-Cas9 screens have emerged as a transformative approach to systematically probe gene functions. The quality and success of these screens depends on the frequencies of loss-of-function alleles, particularly in negative-selection screens widely applied for probing essential genes. Using optimized screening workflows, we performed essentialome screens in cancer cell lines and embryonic stem cells and achieved dropout efficiencies that could not be explained by common frameshift frequencies. We find that these superior effect sizes are mainly determined by the impact of in-frame mutations on protein function, which can be predicted based on amino acid composition and conservation. We integrate protein features into a 'Bioscore' and fuse it with improved predictors of single-guide RNA activity and indel formation to establish a score that captures all relevant processes in CRISPR-Cas9 mutagenesis. This Vienna Bioactivity CRISPR score (www.vbc-score.org) outperforms previous prediction tools and enables the selection of sgRNAs that effectively produce loss-of-function alleles.


Subject(s)
Alleles , CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/genetics , Animals , Benchmarking , CRISPR-Associated Protein 9/genetics , Datasets as Topic , Humans , Mice , Mutation
8.
Life Sci Alliance ; 3(7)2020 07.
Article in English | MEDLINE | ID: mdl-32467316

ABSTRACT

The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1 To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2-wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors.


Subject(s)
Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , Synthetic Lethal Mutations , CRISPR-Cas Systems , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Disease Susceptibility , Gene Silencing , Gene Targeting , Genome-Wide Association Study , Humans , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Proteolysis , Structure-Activity Relationship , Cohesins
9.
Oncotarget ; 11(9): 875-890, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32180900

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphomas worldwide and is characterized by a high diversity of genetic and molecular alterations. Chromosomal translocations and mutations leading to deregulated expression of the transcriptional repressor BCL6 occur in a significant fraction of DLBCL patients. An oncogenic role of BCL6 in the initiation of DLBCL has been shown as the constitutive expression of BCL6 in mice recapitulates the pathogenesis of human DLBCL. However, the role of BCL6 in tumor maintenance remains poorly investigated due to the absence of suitable genetic models and limitations of pharmacological inhibitors. Here, we have utilized tetracycline-inducible CRISPR/Cas9 mutagenesis to study the consequences of BCL6 deletion in established DLBCL models in culture and in vivo. We show that BCL6 knock-out in SU-DHL-4 cells in vitro results in an anti-proliferative response 4-7 days after Cas9 induction that was characterized by cell cycle (G1) arrest. Conditional BCL6 deletion in established DLBCL tumors in vivo induced a significant tumor growth inhibition with initial tumor stasis followed by slow tumor growth kinetics. Our findings support a role of BCL6 in the maintenance of lymphoma growth and showcase the utility of inducible CRISPR/Cas9 systems for probing oncogene addiction.

10.
Curr Opin Genet Dev ; 54: 41-47, 2019 02.
Article in English | MEDLINE | ID: mdl-30951975

ABSTRACT

Drug development remains a slow and expensive process, while the effective use of established therapeutics is widely hampered by our limited understanding of response and resistance mechanisms. Functional-genetic tools such as CRISPR/Cas9, advanced RNAi methods, and targeted protein degradation, together with other emerging technologies such as time-resolved and single-cell transcriptomics, fundamentally change the way we can search for candidate therapeutic targets and evaluate them before drug development. In addition, for already available therapeutics these tools open vast opportunities for probing response mechanisms and predictive biomarkers, and thereby guide the development of personalized therapies. Here, we review promising applications and remaining limitations of recently established functional-genetic tools for high-throughput screening and the in-depth analysis of candidate targets and established drugs.


Subject(s)
Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Biomarkers, Pharmacological , CRISPR-Cas Systems/genetics , Gene Editing/methods , Humans , Neoplasms/genetics , RNA Interference
11.
Nat Protoc ; 14(3): 756-780, 2019 03.
Article in English | MEDLINE | ID: mdl-30710114

ABSTRACT

Genome-wide screening using CRISPR coupled with nuclease Cas9 (CRISPR-Cas9) is a powerful technology for the systematic evaluation of gene function. Statistically principled analysis is needed for the accurate identification of gene hits and associated pathways. Here, we describe how to perform computational analysis of CRISPR screens using the MAGeCKFlute pipeline. MAGeCKFlute combines the MAGeCK and MAGeCK-VISPR algorithms and incorporates additional downstream analysis functionalities. MAGeCKFlute is distinguished from other currently available tools by its comprehensive pipeline, which contains a series of functions for analyzing CRISPR screen data. This protocol explains how to use MAGeCKFlute to perform quality control (QC), normalization, batch effect removal, copy-number bias correction, gene hit identification and downstream functional enrichment analysis for CRISPR screens. We also describe gene identification and data analysis in CRISPR screens involving drug treatment. Completing the entire MAGeCKFlute pipeline requires ~3 h on a desktop computer running Linux or Mac OS with R support.


Subject(s)
Algorithms , CRISPR-Cas Systems/genetics , Genetic Testing/methods , CRISPR-Associated Protein 9/metabolism , Gene Dosage , Genes, Essential , Genome , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...