Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 76(8): 2186-96, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26837762

ABSTRACT

The proliferation of chronic lymphocytic leukemia (CLL) cells requires communication with the lymphoid organ microenvironment. Integrin-linked kinase (ILK) is a multifunctional intracellular adaptor protein that transmits extracellular signals to regulate malignant cell motility, metastasis, and cell-cycle progression, but is poorly characterized in hematologic malignancies. In this study, we investigated the role of ILK in the context of CLL and observed high ILK expression in patient samples, particularly in tumor cells harboring prognostic high-risk markers such as unmutated IGHV genes, high Zap70, or CD38 expression, or a signature of recent proliferation. We also found increased numbers of Ki67 (MKI67)-positive cells in regions of enhanced ILK expression in lymph nodes from CLL patients. Using coculture conditions mimicking the proliferative lymph node microenvironment, we detected a parallel induction of ILK and cyclin D1 (CCND1) expression in CLL cells that was dependent on the activation of NF-κB signaling by soluble TNFα. The newly synthesized ILK protein colocalized to centrosomal structures and was required for correct centrosome clustering and mitotic spindle organization. Furthermore, we established a mouse model of CLL in which B-cell-specific genetic ablation of ILK resulted in decelerated leukemia development due to reduced organ infiltration and proliferation of CLL cells. Collectively, our findings describe a TNFα-NF-κB-mediated mechanism by which ILK expression is induced in the lymph node microenvironment and propose that ILK promotes leukemogenesis by enabling CLL cells to cope with centrosomal defects acquired during malignant transformation. Cancer Res; 76(8); 2186-96. ©2016 AACR.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoid Tissue/enzymology , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Proliferation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Lymphoid Tissue/pathology , Mice , Mice, Transgenic , Prognosis , Protein Serine-Threonine Kinases/genetics , Signal Transduction
2.
Oncotarget ; 6(14): 12048-60, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25895128

ABSTRACT

Homing to distinct lymphoid organs enables chronic lymphocytic leukemia (CLL) cells to receive pro-survival and proliferative signals. Cytogenetic aberrations can significantly affect CLL cell compartmentalization. Trisomy 12 (tri12) defines a CLL subgroup with specific clinical features and increased levels of the negative prognostic marker CD49d, the α4-subunit of the integrin VLA-4, which is a key regulator of CLL cell homing to bone marrow (BM). Chemokine-induced inside-out VLA-4 activation, particularly via the CXCL12-CXCR4 axis, increases the arrest of various cell types on VCAM-1 presenting endothelium. Here, we demonstrate that high CD49d expression in tri12 CLL is accompanied by decreased CXCR4 expression. Dissecting functional consequences of these alterations, we observed that tri12 CLL cell homing to murine BM is not affected by CXCR4-CXCL12 blockage using AMD3100 or olaptesed pegol/NOX-A12. In line, CCL21-CCR7 rather than CXCL12-CXCR4 interactions triggered VLA-4-mediated arrests of tri12 CLL cells to VCAM-1 under blood flow conditions. Concordantly, in real-time kinetic analyses we found CCL21 but not CXCL12 being capable to induce inside-out VLA-4 conformational changes in this CLL subgroup. Our results provide novel insights into the peculiar clinico-biological behaviour of tri12 CLL and emphasize its specific chemokine and integrin utilization during pathophysiologically and therapeutically relevant interactions with the microenvironment.


Subject(s)
Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Animals , Humans , Mice , Signal Transduction
4.
Cancer Res ; 73(2): 561-70, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23117883

ABSTRACT

Microenvironmental interactions are crucial for the survival and proliferation of chronic lymphocytic leukemia (CLL) cells. CD4+ T cells that express CD40 ligand (CD40L), along with other accessory immune and stromal cells within CLL lymph nodes, provide signals needed for activation and outgrowth of the tumor clone. Furthermore, correct positioning of CLL cells within lymphoid subcompartments is essential for the transmission of these supportive signals. Thereby, interstitial cell migration and adhesion events, influenced by activational stimuli, determine CLL cell localization. CD44 has been implicated in cell activation, migration, and tissue retention via binding to its extracellular matrix ligand hyaluronan (HA). In this study, we investigated the role of CD44-HA interactions for CLL positioning and interaction with supportive microenvironments in peripheral lymph nodes, focusing on its regulation via CD40L-dependent, T-cell-mediated activation of CLL cells. We found that hyaluronan triggered a robust CCL21-induced motility of resting CLL cells. However, CD40L stimulation promoted the firm, CD44-mediated adhesion of CLL cells to hyaluronan, antagonizing their motile behavior. N-linked glycosylations of CD44, particularly associated with the variant isoform CD44v6 after CD40L activation, seemed to facilitate hyaluronan recognition by CD44. We propose that the CD40L-CD40 signaling axis provides a stop signal to motile CLL cells within lymph node compartments by inducing high avidity CD44-HA adhesion. This might retain CLL cells close to T-cell stimuli and facilitate essential interactions with hyaluronan-bearing stromal cells, collectively promoting CLL cell proliferation and survival.


Subject(s)
CD40 Antigens/immunology , Chemokine CCL21/immunology , Hyaluronic Acid/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , CD40 Antigens/metabolism , CD40 Ligand/immunology , Cell Movement/immunology , Humans , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL