Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 14(7)2022 07 25.
Article in English | MEDLINE | ID: mdl-35790145

ABSTRACT

Quantifying the chemical composition of fast-growing hard tissues in the environment can shed valuable information in terms of understanding ecosystems both prehistoric and current. Changes in chemical composition can be correlated with environmental conditions and can provide information about the organism's life. Sharks can lose 0.1 to 1.1 teeth/day, depending on species, which offers a unique opportunity to record environmental changes over a short duration of time. Shark teeth contain a biomineral phase that is made up of fluorapatite [Ca5(PO4)3F], and the F distribution within the tooth can be correlated to tooth hardness. Typically, this is determined by bulk acid digestion, energy-dispersive X-ray spectroscopy (EDS), or wavelength-dispersive spectroscopy. Here we present laser-induced breakdown spectroscopy (LIBS) as an alternative and faster approach for determining F distribution within shark teeth. Using a two-volume laser ablation chamber (TwoVol3) with innovative embedded collection optics for LIBS, shark teeth were investigated from sand tiger (Carcharias Taurus), tiger (Galeocerdo Cuvier), and hammerhead sharks (Sphyrnidae). Fluorine distribution was mapped using the CaF 603 nm band (CaF, Β 2Σ+ → X 2Σ+) and quantified using apatite reference materials. In addition, F measurements were cross referenced with EDS analyses to validate the findings. Distributions of F (603 nm), Na (589 nm), and H (656 nm) within the tooth correlate well with the expected biomineral composition and expected tooth hardness. This rapid methodology could transform the current means of determining F distribution, particularly when large sample specimens (350 mm2, presented here) and large quantities of specimens are of interest.


Subject(s)
Fluorine , Sharks , Animals , Ecosystem , Fluorides , Lasers , Spectrometry, X-Ray Emission
2.
Rev Sci Instrum ; 81(1): 013103, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20113077

ABSTRACT

Characterization of phytoplankton community composition is critical to understanding the ecology and biogeochemistry of the oceans. One approach to taxonomic characterization takes advantage of differing pigmentation between algal taxa and thus differences in fluorescence excitation spectra. Analyses of bulk water samples, however, may be confounded by interference from chromophoric dissolved organic matter or suspended particulate matter. Here, we describe an instrument that uses a laser trap based on a Nikon TE2000-U microscope to position individual phytoplankton cells for confocal fluorescence excitation spectroscopy, thus avoiding interference from the surrounding medium. Quantitative measurements of optical power give data in the form of photons emitted per photon of exposure for an individual phytoplankton cell. Residence times for individual phytoplankton in the instrument can be as long as several minutes with no substantial change in their fluorescence excitation spectra. The laser trap was found to generate two-photon fluorescence from the organisms so a modification was made to release the trap momentarily during data acquisition. Typical signal levels for an individual cell are in the range of 10(6) photons/s of fluorescence using a monochromated 75 W Xe arc lamp excitation source with a 2% transmission neutral density filter.


Subject(s)
Spectrometry, Fluorescence/instrumentation , Calibration , Electrical Equipment and Supplies , Equipment Design , Lasers , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Photons , Phytoplankton/chemistry , Scattering, Radiation , Software , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...