Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241401

ABSTRACT

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Subject(s)
Melanoma , Skin Neoplasms , Humans , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Histocompatibility Antigens Class II , HLA Antigens
2.
J Immunother Cancer ; 11(4)2023 04 07.
Article in English | MEDLINE | ID: mdl-37028818

ABSTRACT

BACKGROUND: Immune responses against tumors are subject to negative feedback regulation. Immune checkpoint inhibitors (ICIs) blocking Programmed cell death protein 1 (PD-1), a receptor expressed on T cells, or its ligand PD-L1 have significantly improved the treatment of cancer, in particular malignant melanoma. Nevertheless, responses and durability are variables, suggesting that additional critical negative feedback mechanisms exist and need to be targeted to improve therapeutic efficacy. METHODS: We used different syngeneic melanoma mouse models and performed PD-1 blockade to identify novel mechanisms of negative immune regulation. Genetic gain-of-function and loss-of-function approaches as well as small molecule inhibitor applications were used for target validation in our melanoma models. We analyzed mouse melanoma tissues from treated and untreated mice by RNA-seq, immunofluorescence and flow cytometry to detect changes in pathway activities and immune cell composition of the tumor microenvironment. We analyzed tissue sections of patients with melanoma by immunohistochemistry as well as publicly available single-cell RNA-seq data and correlated target expression with clinical responses to ICIs. RESULTS: Here, we identified 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1), an enzyme that converts inert glucocorticoids into active forms in tissues, as negative feedback mechanism in response to T cell immunotherapies. Glucocorticoids are potent suppressors of immune responses. HSD11B1 was expressed in different cellular compartments of melanomas, most notably myeloid cells but also T cells and melanoma cells. Enforced expression of HSD11B1 in mouse melanomas limited the efficacy of PD-1 blockade, whereas small molecule HSD11B1 inhibitors improved responses in a CD8+ T cell-dependent manner. Mechanistically, HSD11B1 inhibition in combination with PD-1 blockade augmented the production of interferon-γ by T cells. Interferon pathway activation correlated with sensitivity to PD-1 blockade linked to anti-proliferative effects on melanoma cells. Furthermore, high levels of HSD11B1, predominantly expressed by tumor-associated macrophages, were associated with poor responses to ICI therapy in two independent cohorts of patients with advanced melanomas analyzed by different methods (scRNA-seq, immunohistochemistry). CONCLUSION: As HSD11B1 inhibitors are in the focus of drug development for metabolic diseases, our data suggest a drug repurposing strategy combining HSD11B1 inhibitors with ICIs to improve melanoma immunotherapy. Furthermore, our work also delineated potential caveats emphasizing the need for careful patient stratification.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Glucocorticoids , Immunotherapy , Melanoma , Animals , Mice , CD8-Positive T-Lymphocytes , Glucocorticoids/therapeutic use , Interferon-gamma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Drug Repositioning
3.
Cancer Res ; 83(8): 1299-1314, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36652557

ABSTRACT

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE: Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.


Subject(s)
Brain Neoplasms , Endothelium, Vascular , Humans , Endothelium, Vascular/pathology , Endothelial Cells/metabolism , Matrix Metalloproteinase 9/metabolism , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor
4.
STAR Protoc ; 3(1): 101038, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35059651

ABSTRACT

This protocol details the procedure for CRISPR-assisted insertion of epitopes (CRISPitope), a flexible approach for generating tumor cells expressing model CD8+ T cell epitopes fused to endogenously encoded gene products of choice. CRISPitope-engineered tumor cells can be recognized by T cell receptor-transgenic (TCRtg) CD8+ T cells that are widely used in immunology research. Using mice inoculated with CRISPitope-engineered tumor cells, researchers can investigate how the choice of the target antigen for T cell immunotherapies influences treatment efficacy and resistance mechanisms. For complete details on the use and execution of this protocol, please refer to Effern et al. (2020).


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Disease Models, Animal , Epitopes, T-Lymphocyte , Immunotherapy, Adoptive/methods , Mice , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics
5.
Immunity ; 53(3): 564-580.e9, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32750334

ABSTRACT

Tumor immune escape limits durable responses to T cell therapy. Here, we examined how regulation and function of gene products that provide the target epitopes for CD8+ T cell anti-tumor immunity influence therapeutic efficacy and resistance. We used a CRISPR-Cas9-based method (CRISPitope) in syngeneic melanoma models to fuse the same model CD8+ T cell epitope to the C-termini of different endogenous gene products. Targeting melanosomal proteins or oncogenic CDK4R24C (Cyclin-dependent kinase 4) by adoptive cell transfer (ACT) of the same epitope-specific CD8+ T cells revealed diverse genetic and non-genetic immune escape mechanisms. ACT directed against melanosomal proteins, but not CDK4R24C, promoted melanoma dedifferentiation, and increased myeloid cell infiltration. CDK4R24C antigen persistence was associated with an interferon-high and T-cell-rich tumor microenvironment, allowing for immune checkpoint inhibition as salvage therapy. Thus, the choice of target antigen determines the phenotype and immune contexture of recurrent melanomas, with implications to the design of cancer immunotherapies.


Subject(s)
Adoptive Transfer/methods , CD8-Positive T-Lymphocytes/transplantation , Epitopes, T-Lymphocyte/immunology , Melanoma/immunology , Melanoma/therapy , Tumor Escape/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell- and Tissue-Based Therapy/methods , Epitopes, T-Lymphocyte/genetics , Gene Knockout Techniques , Immune Checkpoint Inhibitors/pharmacology , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Myeloid Cells/immunology , Tumor Microenvironment/immunology
6.
Sci Transl Med ; 12(536)2020 03 25.
Article in English | MEDLINE | ID: mdl-32213629

ABSTRACT

The Western diet is rich in salt, which poses various health risks. A high-salt diet (HSD) can stimulate immunity through the nuclear factor of activated T cells 5 (Nfat5)-signaling pathway, especially in the skin, where sodium is stored. The kidney medulla also accumulates sodium to build an osmotic gradient for water conservation. Here, we studied the effect of an HSD on the immune defense against uropathogenic E. coli-induced pyelonephritis, the most common kidney infection. Unexpectedly, pyelonephritis was aggravated in mice on an HSD by two mechanisms. First, on an HSD, sodium must be excreted; therefore, the kidney used urea instead to build the osmotic gradient. However, in contrast to sodium, urea suppressed the antibacterial functionality of neutrophils, the principal immune effectors against pyelonephritis. Second, the body excretes sodium by lowering mineralocorticoid production via suppressing aldosterone synthase. This caused an accumulation of aldosterone precursors with glucocorticoid functionality, which abolished the diurnal adrenocorticotropic hormone-driven glucocorticoid rhythm and compromised neutrophil development and antibacterial functionality systemically. Consistently, under an HSD, systemic Listeria monocytogenes infection was also aggravated in a glucocorticoid-dependent manner. Glucocorticoids directly induced Nfat5 expression, but pharmacological normalization of renal Nfat5 expression failed to restore the antibacterial defense. Last, healthy humans consuming an HSD for 1 week showed hyperglucocorticoidism and impaired antibacterial neutrophil function. In summary, an HSD suppresses intrarenal neutrophils Nfat5-independently by altering the local microenvironment and systemically by glucocorticoid-mediated immunosuppression. These findings argue against high-salt consumption during bacterial infections.


Subject(s)
Escherichia coli , Neutrophils , Animals , Anti-Bacterial Agents , Diet , Mice , Sodium Chloride, Dietary
7.
J Surg Res ; 220: 327-335, 2017 12.
Article in English | MEDLINE | ID: mdl-29180199

ABSTRACT

BACKGROUND: Parathyroid hormone (PTH) is the only clinically approved osteoanabolic drug for osteoporosis treatment. However, PTH is not established for the treatment of fracture healing, and doses of PTH diverge significantly between different studies. We hypothesized that the effect of PTH on promoting fracture healing and bone formation is dose dependent. MATERIALS AND METHODS: In vivo, mice were treated with PTH (10, 40, and 200 µg/kg) in a closed femoral fracture model. Fracture healing was analyzed after 4 weeks. The fourth lumbar vertebra was analyzed to assess systemic effects. In addition, osteoblasts from calvaria of mice were treated in vitro with PTH doses of 10-5-50 nM, and their differentiation was analyzed after 26 days. RESULTS: In vivo, PTH dose-dependently stimulated bone formation in the fracture callus and the vertebral body. However, PTH treatment did not increase biomechanical stiffness of the fractured femora in a dose-dependent manner. The increased bone formation in the 200 µg/kg group was associated with a depletion of osteoclasts, indicating diminished bone remodeling. Of interest, in vitro, we observed diminished mineralization with the highest doses of PTH in osteoblast cultures. CONCLUSIONS: PTH dose-dependently stimulates bone formation in vivo. However, during fracture healing, this did not result in a dose-dependent increase of the mechanical stiffness of the fracture callus. Taken together, our in vivo and in vitro data indicate that the dose-dependent effects of PTH during fracture healing are based on the actions on multiple cell types, thereby influencing not only bone formation but also osteoclastic callus remodeling.


Subject(s)
Fracture Healing/drug effects , Parathyroid Hormone/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Mice, Inbred C57BL , Osteoclasts/drug effects , X-Ray Microtomography
8.
Immunity ; 47(4): 789-802.e9, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045907

ABSTRACT

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.


Subject(s)
Immunotherapy/methods , Neoplasms, Experimental/therapy , Neutrophils/immunology , Proto-Oncogene Proteins c-met/immunology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Kaplan-Meier Estimate , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Neutrophils/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
9.
Oncoimmunology ; 6(6): e1320626, 2017.
Article in English | MEDLINE | ID: mdl-28680756

ABSTRACT

Immune checkpoint inhibitors have significantly improved the treatment of several cancers. T-cell infiltration and the number of neoantigens caused by tumor-specific mutations are correlated to favorable responses in cancers with a high mutation load. Accordingly, checkpoint immunotherapy is thought to be less effective in tumors with low mutation frequencies such as neuroblastoma, a neuroendocrine tumor of early childhood with poor outcome of the high-risk disease group. However, spontaneous regressions and paraneoplastic syndromes seen in neuroblastoma patients suggest substantial immunogenicity. Using an integrative transcriptomic approach, we investigated the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-existing immune responses and potential responsiveness to checkpoint inhibition. Here, we report that a T-cell-poor microenvironment in primary metastatic neuroblastomas is associated with genomic amplification of the MYCN (N-Myc) proto-oncogene. These tumors exhibited lower interferon pathway activity and chemokine expression in line with reduced immune cell infiltration. Importantly, we identified a global role for N-Myc in the suppression of interferon and pro-inflammatory pathways in human and murine neuroblastoma cell lines. N-Myc depletion potently enhanced targeted interferon pathway activation by a small molecule agonist of the cGAS-STING innate immune pathway. This promoted chemokine expression including Cxcl10 and T-cell recruitment in microfluidics migration assays. Hence, our data suggest N-Myc inhibition plus targeted IFN activation as adjuvant strategy to enforce cytotoxic T-cell recruitment in MYCN-amplified neuroblastomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...