Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chemosphere ; 331: 138784, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37119931

ABSTRACT

Coastal wetlands are being greatly affected by global climate change, and understanding how tides influence plant connectivity can provide a basis for plant conservation and wetland restoration decisions in degraded and at-risk areas. In our study, we quantified the structural and functional connectivity of Suaeda salsa in the Yellow River Delta and explored the impact of tidal action on connectivity. The results showed that plant structural connectivity increased with distance inland from the sea. Similarly, seed connectivity was enhanced but gene connectivity was diminished when moving inland. An increase in the tidal channel branching rate was associated with a significant reduction in plant structural connectivity, and tidal inundation frequency significantly promoted gene connectivity. Tidal action was found to reduce seed circulation and germination, but this effect was not significant. Overall, it was established that plant structural connectivity is not equivalent to functional connectivity and that the effects of tides on structural and functional connectivity are inconsistent. In terms of achieving effective plant connectivity, tides can promote connectivity. In addition, when studying plant connectivity, temporal and spatial scales should be considered. This study provides a more comprehensive and insightful understanding tidal drivers of plant connectivity.


Subject(s)
Chenopodiaceae , Wetlands , Plants , Rivers , Seeds , China
2.
J Environ Manage ; 279: 111788, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33310241

ABSTRACT

Sewers are a critical part of the urban water system and represent a considerable investment due to the presence of extensive networks in many cities. Consequently, excess sewer sediment deposition, from changed inflow conditions or lack of appropriate sewer infrastructure, can lead to significantly increased maintenance and operational costs. The main aim of this manuscript is to quantify the potential impacts of reduced inflow and increased sediment concentrations from the implementation of sustainable water practices, such as Decentralized Water Recycling and Water Demand Management, on excess sediment deposition in gravity sewers. Experiments in a sewer pilot plant, with municipal wastewater, and modelling using a comprehensive local-scale sewer sediment model were used in conjunction to address this aim. Results from both these methods indicated that a reduction in inflows from the moderate implementation of sustainable water practices had a large impact on the quantity of sediment deposited in gravity sewers. However, further modelling showed that the reduction in bed erosion during peak flows for the same implementations of sustainable water practices occurred more gradually. Overall, our findings showed that in existing gravity sewer mains with reasonable slope and flow velocities, a moderate decrease in peak flow velocity of around 15% due to the implementation of Decentralized Water Recycling and Water Demand Management was unlikely to result in a net increase of sediment deposition. Future work in this area could focus on confirming these findings through case studies in the field or on long-term pilot studies with detailed bed height and density measurements.


Subject(s)
Sewage , Water , Cities , Recycling , Wastewater
3.
Sci Total Environ ; 723: 138020, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32217386

ABSTRACT

Estimating gross primary production and ecosystem respiration from oxygen data is performed widely in aquatic systems, yet these estimates can be challenged by high advective fluxes of oxygen. In this study, we develop a hybrid framework linking data-driven and process-based modelling to examine the effect of storm events on oxygen budgets in a constructed wetland. After calibration against measured flow and water temperature data over a two-month period with three storm events, the model was successfully validated against high frequency dissolved oxygen (DO) data exhibiting large diurnal fluctuations. The results demonstrated that pulses of high-DO water injected into the wetland during storm events were able to dramatically change the wetland oxygen budget. A shift was observed in the dominant oxygen inputs, from benthic net production during non-storm periods, to inflows of oxygen during storm events, which served to dampen the classical diurnal oxygen signature. The model also demonstrated the changing balance of pelagic versus benthic production and hypoxia extent in response to storm events, which has implications for the nutrient attenuation performance of constructed wetlands. The study highlights the benefit of linking analysis of high-frequency oxygen data with process-based modelling tools to unravel the varied responses of components of the oxygen budget to storm events.

4.
J Environ Manage ; 240: 219-230, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30947090

ABSTRACT

Decreasing per capita water consumption in several OECD countries has led to a notable flow reduction into sewer systems. However, sewers still transport similar quantities of solids and pollutants, leading to increased wastewater concentration and, potentially, excess solids deposition. The shift towards decentralised water schemes in cities and widely reported changes in rainfall patterns cast additional uncertainty on future wastewater quality and flows into sewers. Excess solids deposition in sewers can cause increased environmental pollution risks at Combined Sewer Overflows from solids resuspension and reduced sewer hydraulic capacities. This review analyses the magnitude of excess solids deposition due to changing wastewater composition and evaluates current approaches to modelling sewer solids. Gaps in commonly used modelling approaches for deposited bed processes, specifically in bed consolidation and bed particle cohesion processes, and gross solids transport were identified and addressed to enable better solids risk prediction and management.


Subject(s)
Sewage , Wastewater , Cities
5.
Ecol Evol ; 8(14): 7111-7130, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073071

ABSTRACT

Understanding challenges posed by climate change to estuaries and their faunas remains a high priority for managing these systems and their communities. Freshwater discharge into a range of estuary types in south-western Australia between 1990 and 2015 is shown to be related to rainfall. This largely accounts for decreases in discharge in this microtidal region being more pronounced on the west coast than south coast, where rainfall decline was less. Results of an oxygen-balance model imply that, as demonstrated by empirical data for the Swan River Estuary, declines in discharge into a range of estuary types would be accompanied by increases in the extent of hypoxia. In 2013-15, growth and body condition of the teleost Acanthopagrus butcheri varied markedly among three permanently open, one intermittently-open, one seasonally-closed and one normally-closed estuary, with average time taken by females to reach the minimum legal length (MLL) of 250 mm ranging from 3.6 to 17.7 years. It is proposed that, in a given restricted period, these inter-estuary variations in biological characteristics are related more to differences in factors, such as food resources and density, than to temperature and salinity. The biological characteristics of A. butcheri in the four estuaries, for which there are historical data, changed markedly between 1993-96 and 2013-15. Growth of both sexes, and also body condition in all but the normally-closed estuary, declined, with females taking between 1.7 and 2.9 times longer to attain the MLL. Irrespective of period, body condition, and growth are positively related. Age at maturity typically increased between periods, but length at maturity declined only in the estuary in which growth was greatest. The plasticity of the biological characteristics of A. butcheri, allied with confinement to its natal estuary and ability to tolerate a wide range of environmental conditions, makes this sparid and comparable species excellent subjects for assessing estuarine "health."

6.
Front Plant Sci ; 8: 2097, 2017.
Article in English | MEDLINE | ID: mdl-29276526

ABSTRACT

Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized that stratification-induced anoxia can lead to accelerated P. crispus dieback in this region, causing formation of a ring-shaped pattern in spatial macrophyte distribution. Overall, our study demonstrates that submerged macrophytes can alter the thermal characteristics and oxygen levels within shallow lakes and thus create challenging conditions for maximizing their spatial coverage.

7.
Environ Sci Technol ; 51(17): 9864-9875, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28813138

ABSTRACT

Assessment of water quality evolution in the thousands of existing and future mine pit lakes worldwide requires new numerical tools that integrate geochemical, hydrological, and biological processes. A coupled model was used to test alternative hypothesized controls on water quality in a pit lake over ∼8 years. The evolution of pH, Al, and Fe were closely linked; field observations were reproduced with generic solubility equilibrium controls on Fe(III) and Al and a commonly reported acceleration of the abiotic Fe(II) oxidation rate by 2-3 orders of magnitude. Simulations indicated an ongoing acidity loading at the site, and the depletion of Al mineral buffering capacity after ∼5 years. Simulations also supported the existence of pH limitation on nitrification, and a limitation on phytoplankton growth other than the commonly postulated P and DIC limitations. Furthermore, the model reproduced the general patterns of salinity, pH, Al, and Fe during an uncontrolled river breach in 2011, however, incorporating sediment biogeochemical feedbacks is required to reproduce the observed postbreach internal alkalinity generation in the lake. The modeling approach is applicable to the study of hydrological, geochemical, and biological interactions for a range of lake and reservoir management challenges.


Subject(s)
Ferric Compounds , Lakes , Water Quality , Ecology , Hydrobiology , Hydrodynamics
8.
Sci Total Environ ; 598: 1001-1014, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28468117

ABSTRACT

Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function.

9.
Biology (Basel) ; 6(2)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353646

ABSTRACT

The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

10.
Water Res ; 107: 66-82, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27837734

ABSTRACT

Among different Water Sensitive Urban Design (WSUD) options, constructed wetlands (CWs) are widely used to protect and support downstream urban waterways from stormwater nutrients. This analysis assessed the nutrient attenuation ability of a novel CW in Western Australia that combined multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments within a parkland context to improve the urban landscape and amenity. The CW was designed to maximise nutrient reduction despite experiencing a large range of hydrologic conditions, from low transit time nutrient-rich pulses during the wet periods to prolonged low to zero flow conditions during the dry periods. The CW design was further complicated by the possibility of ungauged water inputs after wet antecedent conditions, seasonal macrophyte senescence and a recirculation system to maintain flow during the dry periods. From analysis of data over a range of time scales, we determined that overall the CW attenuated up to 62% total nitrogen (TN) and 99% total phosphorus (TP) loads during dry weather conditions, and 54-76% TN and 27-68% TP during episodic flow pulses. N species attenuation was dominant in the SF compartments, while P species were attenuated mostly within the SSF compartments. Nutrient accumulation in the sediments, and above and below ground biomass of the macrophytes were found to increase during the early stages of operation, suggesting the system reached equilibrium within four years. Further, by comparing trends in nutrient attenuation within the context of diel changes in high frequency oxygen data from different compartments, it was demonstrated that changes in dissolved oxygen were related to changes in nutrient concentration across the CW, although interpretation of this was complicated by changing hydro-climatological conditions. The implementation of this CW concept in a highly seasonal Mediterranean climate demonstrates that urban liveability and environmental health can both be improved through careful design.


Subject(s)
Phosphorus , Wetlands , Nitrogen , Waste Disposal, Fluid , Water Movements , Water Purification
11.
Conserv Physiol ; 3(1): cov001, 2015.
Article in English | MEDLINE | ID: mdl-27293686

ABSTRACT

Whales migrate long distances and reproduce on a finite store of energy. Budgeting the use of this limited energy reserve is an important factor to ensure survival over the period of migration and to maximize reproductive investment. For some whales, migration routes are closely associated with coastal areas, exposing animals to high levels of human activity. It is currently unclear how various forms of human activity may disturb whales during migration, how this might impact their energy balance and how this could translate into long-term demographic changes. Here, we develop a theoretical bioenergetic model for migrating humpback whales to investigate the optimal migration strategy that minimizes energy use. The average migration velocity was an important driver of the total energy used by a whale, and an optimal velocity of 1.1 m s(-1) was determined. This optimal velocity is comparable to documented observed migration speeds, suggesting that whales migrate at a speed that conserves energy. Furthermore, the amount of resting time during migration was influenced by both transport costs and feeding rates. We simulated hypothetical disturbances to the optimal migration strategy in two ways, by altering average velocity to represent changes in behavioural activity and by increasing total travelled distance to represent displacement along the migration route. In both cases, disturbance increased overall energy use, with implications for the growth potential of calves.

12.
Biology (Basel) ; 2(1): 1-25, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-24832649

ABSTRACT

Assisted colonization-the deliberate translocation of species from unsuitable to suitable regions-is a controversial management tool that aims to prevent the extinction of populations that are unable to migrate in response to climate change or to survive in situ. The identification of suitable translocation sites is therefore a pressing issue. Correlative species distribution models, which are based on occurrence data, are of limited use for site selection for species with historically restricted distributions. In contrast, mechanistic species distribution models hold considerable promise in selecting translocation sites. Here we integrate ecoenergetic and hydrological models to assess the longer-term suitability of the current habitat of one of the world's rarest chelonians, the Critically Endangered Western Swamp Tortoise (Psuedemydura umbrina). Our coupled model allows us to understand the interaction between thermal and hydric constraints on the foraging window of tortoises, based on hydrological projections of its current habitat. The process can then be repeated across a range of future climates to identify regions that would fall within the tortoise's thermodynamic niche. The predictions indicate that climate change will result in reduced hydroperiods for the tortoises. However, under some climate change scenarios, habitat suitability may remain stable or even improve due to increases in the heat budget. We discuss how our predictions can be integrated with energy budget models that can capture the consequences of these biophysical constraints on growth, reproduction and body condition.

13.
J Water Health ; 4(1): 87-98, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16604841

ABSTRACT

Artificial cow pats were seeded with Cryptosporidium oocysts and subjected to a simulated rainfall event. The runoff from the faecal pat was collected and different particle size fractions were collected within settling columns by exploiting the size-dependent settling velocities. Particle size and Cryptosporidium concentration distribution at 10 cm below the surface was measured at regular intervals over 24 h. Initially a large proportion of the total volume of particles belonged to the larger size classes (> 17 microm). However, throughout the course of the experiment, there was a sequential loss of the larger size classes from the sampling depth and a predominance of smaller particles (< 17 microm). The Cryptosporidium concentration at 10 cm depth did not change throughout the experiment. In the second experiment samples were taken from different depths within the settling column. Initially 26% of particles were in the size range 124-492 microm. However, as these large particles settled there was an enrichment at 30 cm after one hour (36.5-49.3%). There was a concomitant enrichment of smaller particles near the surface after 1 h and 24 h. For Pat 1 there was no difference in Cryptosporidium concentration with depth after 1 h and 24 h. In Pat 2 there was a difference in concentration between the surface and 30 cm after 24 h. However, this could be explained by the settling velocity of a single oocyst. The results suggested that oocysts are not associated with large particles, but exist in faecal runoff as single oocysts and hence have a low (0.1 m(d-1)) settling velocity. The implications of this low settling velocity on Cryptosporidium risk reduction within water supply reservoirs was investigated through the application of a three-dimensional model of oocyst fate and transport to a moderately sized reservoir (26 GL). The model indicated that the role of settling on oocyst concentration reduction within the water column is between one and three orders of magnitude less than that caused by advection and dilution, depending on the strength of hydrodynamic forcing.


Subject(s)
Cryptosporidium/isolation & purification , Feces/microbiology , Water Microbiology , Animals , Cattle , Cryptosporidium/parasitology , Feces/parasitology , Fluorescent Antibody Technique , New South Wales , Oocysts/isolation & purification , Particle Size , Rain , Risk Assessment , Risk Reduction Behavior , Water Supply/analysis
14.
Environ Sci Technol ; 39(22): 8614-21, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16323754

ABSTRACT

This study investigated the relative behavior of pathogens, fecal indicator organisms, and particles of varying size during transport through a reservoir following a storm event inflow in Myponga Reservoir, South Australia. During the inflow, samples were collected from the river and at various locations within the reservoir to determine the fate and transport of microroganisms as they progressed through the water body. Microbiological analysis included the indicator organisms Escherichia coli, enterococci, Clostridium perfringens, aerobic spores, and somatic coliphages, the protozoan pathogens Cryptosporidium spp. and Giardia spp., and the potential physical surrogates of pathogen contamination including particle size and turbidity. Of the microbial indicator groups, C. perfringens spores were the most highly correlated with Cryptosporidium spp. concentrations (Spearman Rho = 0.58), closely followed by enterococci (Spearman Rho = 0.57). Cryptosporidium spp. oocysts were predominantly associated with small sized particles (range of 14.3-27.7 microm). All of the microbial indicator groups tested were associated with larger sized particle ranges (> 63.3 microm) except C. perfringens spores which were associated with particles in the size range of 45.5-63.3 microm. Although indicators may rank correlate with Cryptosporidium spp., the variation in settling rates of different microorganisms has significant implications for the use of surrogates to estimate pathogen attenuation within reservoirs. For example, concentrations of Cryptosporidium spp. oocysts were reduced by a factor of 3 on reaching the dam wall, whereas enterococci were reduced by a factor of 10.


Subject(s)
Environmental Monitoring/methods , Fresh Water/analysis , Indicators and Reagents/analysis , Water Microbiology , Water Pollution/analysis , Animals , Australia , Clostridium perfringens/isolation & purification , Cryptosporidium/isolation & purification , Disasters , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Fresh Water/microbiology , Fresh Water/parasitology , Giardia/isolation & purification , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...