Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(10): 2932-2941, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38590233

ABSTRACT

In this study, we successfully applied a transition-edge sensor (TES) spectrometer as a detector for microbeam X-ray measurements from a synchrotron X-ray light source in the hard X-ray region to determine uranium (U) distribution at the micro-scale and its chemical species in biotite obtained from a U mine. It is difficult to separate the fluorescent X-ray of the U Lα1 line at 13.615 keV from that of the Rb Kα line at 13.395 keV in the X-ray fluorescence spectrum with an energy resolution of approximately 220 eV using a conventional silicon drift detector (SDD). Meanwhile, the fluorescent X-rays of U Lα1 and Rb Kα were fully separated by a TES with 50 eV energy resolution at an energy of around 13 keV. The successful peak separation by the TES led to an accurate mapping analysis of trace U in micro-X-ray fluorescence measurements and a decrease in the signal-to-background ratio in micro-X-ray absorption near edge structure spectroscopy. Thus, it could be a powerful tool for studying the U distribution and speciation in various environmental samples.

2.
Anal Chim Acta ; 1240: 340755, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36641142

ABSTRACT

Accurate determination of cerium (Ce) valence state is important for interpreting the Ce anomaly in geological archives for (paleo)redox reconstruction. However, the routine application of Ce L3-edge X-ray absorption near-edge structure (XANES) spectroscopy for detecting trace Ce in geological samples can often be restricted by coexisting titanium (Ti) due to the proximity of their fluorescence emission lines. Therefore, the signal-to-noise ratio of Ce L3-edge XANES spectra may not be sufficiently high for high-quality spectroscopic analysis. This study introduces a semi-quantitative approach appropriate for Ti-rich, Ce-dilute geological materials by synchrotron-based X-ray measurement at the Ce L2-edge. First, the results confirm that Ce L2-edge XANES spectra are able to avoid overlapping Ti Kß emissions and provide more reliable information on the Ce valence state in Ti-rich materials relative to L3-edge XANES. Moreover, the application of transition-edge sensor (TES) could reach the higher sensitivity with better energy resolution than conventional silicon drift detector (SDD) to detect fluorescence X-ray (Ce Lß1). The investigation on bauxites developed from the Columbia River Basalts shows that combining Ce L2-edge XANES and TES allows for resolving weak Ce fluorescence lines at the L2-edge from Ti-rich, Ce-dilute samples (Ti/Ce mass ratio up to ∼6000, tens of ppm Ce). The outcome emphasizes the practical possibility of investigating Ce redox state in Ti-rich geological samples.


Subject(s)
Cerium , Cerium/chemistry , Titanium , Aluminum Oxide , X-Ray Absorption Spectroscopy , Oxidation-Reduction
3.
J Synchrotron Radiat ; 28(Pt 1): 111-119, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399559

ABSTRACT

This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in situ measurement of photon energies over a wide energy range. The diffractometer uses a reference silicon single-crystal plate and a highly accurate angle encoder called SelfA. The performance of the system is evaluated by repeatedly measuring the energy of the first excited state of the potassium-40 nuclide. The excitation energy is determined as 29829.39 (6) eV, and this is one order of magnitude more accurate than the previous measurement. The estimated uncertainty of the photon energy measurement was 0.7 p.p.m. as a standard deviation and the maximum observed deviation was 2 p.p.m.

4.
Nature ; 573(7773): 238-242, 2019 09.
Article in English | MEDLINE | ID: mdl-31511686

ABSTRACT

The metastable first excited state of thorium-229, 229mTh, is just a few electronvolts above the nuclear ground state1-4 and is accessible by vacuum ultraviolet lasers. The ability to manipulate the 229Th nuclear states with the precision of atomic laser spectroscopy5 opens up several prospects6, from studies of fundamental interactions in physics7,8 to applications such as a compact and robust nuclear clock5,9,10. However, direct optical excitation of the isomer and its radiative decay to the ground state have not yet been observed, and several key nuclear structure parameters-such as the exact energies and half-lives of the low-lying nuclear levels of 229Th-remain unknown11. Here we present active optical pumping into 229mTh, achieved using narrow-band 29-kiloelectronvolt synchrotron radiation to resonantly excite the second excited state of 229Th, which then decays predominantly into the isomer. We determine the resonance energy with an accuracy of 0.07 electronvolts, measure a half-life of 82.2 picoseconds and an excitation linewidth of 1.70 nanoelectronvolts, and extract the branching ratio of the second excited state into the ground and isomeric state. These measurements allow us to constrain the 229mTh isomer energy by combining them with γ-spectroscopy data collected over the past 40 years.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 1): 041919, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17155108

ABSTRACT

Charge detection biosensors have recently become the focal point of biosensor research, especially field-effect-transistors (FETs) that combine compactness, low cost, high input, and low output impedances, to realize simple and stable in vivo diagnostic systems. However, critical evaluation of the possibility and limitations of charge detection of label-free DNA hybridization using silicon-based ion-sensitive FETs (ISFETs) has been introduced recently. The channel surface of these devices must be covered by relatively thick insulating layers ( SiO2, Si3N4, Al2O3, or Ta2O5) to protect against the invasion of ions from solution. These thick insulating layers are not suitable for charge detection of DNA and miniaturization, as the small capacitance of thick insulating layers restricts translation of the negative DNA charge from the electrolyte to the channel surface. To overcome these difficulties, thin-gate-insulator FET sensors should be developed. Here, we report diamond solution-gate FETs (SGFETs), where the DNA-immobilized channels are exposed directly to the electrolyte solution without gate insulator. These SGFETs operate stably within the large potential window of diamond (>3.0 V). Thus, the channel surface does not need to be covered by thick insulating layers, and DNA is immobilized directly through amine sites, which is a factor of 30 more sensitive than existing Si-ISFET DNA sensors. Diamond SGFETs can rapidly detect complementary, 3-mer mismatched (10 pM) and has a potential for the detection of single-base mismatched oligonucleotide DNA, without biological degradation by cyclically repeated hybridization and denature.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , DNA/genetics , Electrochemistry/instrumentation , In Situ Hybridization/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Transistors, Electronic , Biosensing Techniques/methods , Diamond/chemistry , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , In Situ Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Sensitivity and Specificity , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...