Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(49): 18158-18165, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38014683

ABSTRACT

Vasculature-on-a-chip is a microfluidic cell culture device used for modeling vascular functions by culturing endothelial cells. Porous membranes are widely used to create cell culture environments. However, in situ real-time measurements of cellular metabolites in microchannels are challenging. In this study, a novel microfluidic device with a porous membrane electrode was developed for the in situ monitoring of nitric oxide (NO) released by endothelial cells in real time. In this system, a porous Au membrane electrode was placed directly beneath the cells for in situ and real-time measurements of NO, a biomarker of endothelial cells. First, the device was electrochemically characterized to construct a calibration plot for NO. Next, NO released by human umbilical vein endothelial cells under l-arginine stimulation was successfully quantified. Furthermore, the changes in NO release with culture time (in days) using the same sample were successfully recorded by exploiting minimally invasive measurements. This is the first report on the combination of a microfluidic device and porous membrane electrode for the electrochemical analysis of endothelial cells. This device will contribute to the development of organ-on-a-chip technology for real-time in situ cell analyses.


Subject(s)
Lab-On-A-Chip Devices , Nitric Oxide , Humans , Nitric Oxide/metabolism , Porosity , Human Umbilical Vein Endothelial Cells/metabolism , Electrodes
2.
Macromol Biosci ; 23(9): e2300069, 2023 09.
Article in English | MEDLINE | ID: mdl-37055930

ABSTRACT

Hydrogels are widely used in cell culture applications. For fabricating tissues and organs, it is essential to produce hydrogels with specific structures. For instance, multiple-branched hydrogels are desirable for the development of network architectures that resemble the biological vascular network. However, existing techniques are inefficient and time-consuming for this application. To address this issue, a simple, rapid, and large-scale fabrication method based on viscous fingering is proposed. This approach utilizes only two plates. To produce a thin solution, a high-viscosity solution is introduced into the space between the plates, and one of the plates is peeled off. During this procedure, the solution's high viscosity results in the formation of multi-branched structures. Using this strategy, 180 mm × 200 mm multi-branched Pluronic F-127 hydrogels are successfully fabricated within 1 min. These structures are used as sacrificial layers for the fabrication of polydimethylsiloxane channels for culturing human umbilical vein endothelial cells (HUVECs). Similarly, multi-branched Matrigel and calcium (Ca)-alginate hydrogel structures are fabricated, and HUVECs are successfully cultured inside the hydrogels. Also, the hydrogels are collected from the plate, while maintaining their structures. The proposed fabrication technique will contribute to the development of network architectures such as vascular structures in tissue engineering.


Subject(s)
Hydrogels , Tissue Engineering , Humans , Hydrogels/chemistry , Viscosity , Tissue Engineering/methods , Human Umbilical Vein Endothelial Cells , Alginates/chemistry , Cell Culture Techniques
3.
Anal Sci ; 38(10): 1297-1304, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35895213

ABSTRACT

Endothelial cells have been widely used for vascular biology studies; recent progress in tissue engineering have offered three-dimensional (3D) culture systems for vascular endothelial cells which can be considered as physiologically relevant models. To facilitate the studies, we developed an electrochemical device to detect nitric oxide (NO), a key molecule in the vasculature, for the evaluation of 3D cultured endothelial cells. Using an NO-sensitive catalyst composed of Fe-N co-doped reduced graphene oxide, the real-time monitoring of NO release from the endothelial cell spheroids was demonstrated.


Subject(s)
Endothelial Cells , Nitric Oxide , Carbon , Catalysis , Tissue Engineering/methods
4.
Micromachines (Basel) ; 13(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35334714

ABSTRACT

Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel electrochemical strategy for gluing hydrogel fibers. In this strategy, a microelectrode electrochemically generated HClO or Ca2+, and these chemicals were used to crosslink chitosan-alginate fibers fabricated using interfacial polyelectrolyte complexation. Further, human umbilical vein endothelial cells were incorporated into the fibers, and two such fibers were glued together to construct "+"-shaped hydrogels. After gluing, the hydrogels were embedded in Matrigel and cultured for several days. The cells spread and proliferated along the fibers, indicating that the electrochemical glue was not toxic toward the cells. This is the first report on the use of electrochemical glue for the assembly of hydrogel pieces containing cells. Based on our results, the electrochemical gluing method has promising applications in tissue engineering and the development of organs on a chip.

5.
Biosens Bioelectron ; 181: 113123, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33714859

ABSTRACT

The respiratory activity of cultured cells can be electrochemically monitored using scanning electrochemical microscopy (SECM) with high spatial resolution. However, in SECM, the electrode takes a long time to scan, limiting simultaneous measurements with large biological samples such as cell spheroids. Therefore, for rapid electrochemical imaging, a novel strategy is needed. Herein, we report electrochemiluminescence (ECL) imaging of spheroid respiratory activity for the first time using sequential potential steps. L-012, a luminol analog, was used as an ECL luminophore, and H2O2, a sensitizer for ECL of L-012, was generated by the electrochemical reduction of dissolved O2. The ECL imaging visualized spheroid respiratory activity-evidenced by ECL suppression-corresponding to O2 distribution around the spheroids. This method enabled the time-lapse imaging of respiratory activity in multiple spheroids with good spatial resolution comparable to that of SECM. Our work provides a promising high-throughput imaging strategy for elucidating spheroid cellular dynamics.


Subject(s)
Biosensing Techniques , Spheroids, Cellular , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Luminescent Measurements , Luminol
6.
ACS Omega ; 6(51): 35476-35483, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984279

ABSTRACT

It is important to clarify the transport of biomolecules and chemicals to tissues. Herein, we present an electrochemical imaging method for evaluating the endothelial permeability. In this method, the diffusion of electrochemical tracers, [Fe(CN)6]4-, through a monolayer of human umbilical vein endothelial cells (HUVECs) was monitored using a large-scale integration-based device containing 400 electrodes. In conventional tracer-based assays, tracers that diffuse through an HUVEC monolayer into another channel are detected. In contrast, the present method does not employ separated channels. In detail, a HUVEC monolayer is immersed in a solution containing [Fe(CN)6]4- on the device. As [Fe(CN)6]4- is oxidized and consumed at the packed electrodes, [Fe(CN)6]4- begins to diffuse through the monolayer from the bulk solution to the electrodes and the obtained currents depend on the endothelial permeability. As a proof-of-concept, the effects of histamine on the monolayer were monitored. Also, an HUVEC monolayer was cocultured with cancer spheroids, and the endothelial permeability was monitored to evaluate the metastasis of the cancer spheroids. Unlike conventional methods, the device can provide spatial information, allowing the interaction between the monolayer and the spheroids to be monitored. The developed method is a promising tool for organs-on-a-chip and drug screening in vitro.

7.
J Biosci Bioeng ; 130(5): 539-544, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32758401

ABSTRACT

Hydrogels are receiving increasing attention in bioapplications. Among hydrogels, calcium alginate (Ca-alginate) hydrogels are widely used for their biocompatibility, low toxicity, low cost, and rapid fabrication by simple mixing of Ca2+ and sodium alginate (Na-alginate). For bioapplications using hydrogels, it is necessary to construct designed hydrogel structures. Although several methods have been proposed for fabricating designed hydrogels, a simple and low-cost method is desirable. Therefore, we developed a new method using sacrificial templates of sugar structures to fabricate three-dimensional (3D) designed Ca-alginate hydrogels. In this method, Na-alginate solution is mixed with molten sugar, and the resulting highly viscous material used to mold 3D sugar structures as sacrificial templates. Since sugar constructs are easily handled compared to hydrogels, sugar templates are useful for preparing 3D constructs. Finally, the sugar and Na-alginate structure is immersed in a CaCl2 solution to simultaneously dissolve the template and form the Ca-alginate hydrogel. The resulting hydrogel takes the shape of the sugar template. By stacking and fusing various sugar structures, such as fibers and blocks, 3D designed Ca-alginate hydrogels can be successfully fabricated. This simple and low-cost method shows excellent potential for application to a variety of bioapplications.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Sugars/chemistry , Calcium Chloride/chemistry , Costs and Cost Analysis
8.
Analyst ; 145(19): 6342-6348, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32716439

ABSTRACT

Hypoxia is one of the major hallmarks of solid tumours and is associated with the poor prognosis of various cancers. A multicellular aggregate, termed a spheroid, has been used as a tumour model with a necrotic-like core for more than 45 years. Oxygen metabolism in spheroids has been studied using phosphorescence quenching and oxygen-sensitive electrodes. However, these conventional methods require chemical labelling and physical insertion of the electrode into each spheroid, which may be functionally and structurally disruptive. Scanning electrochemical microscopy (SECM) can non-invasively analyse oxygen metabolism. Here, we used SECM to investigate whether the changes of the internal structure of spheroids affect the oxygen metabolism. We investigated the oxygen consumption rate (OCR) of MCF-7 breast tumour spheroids with and without a necrotic-like core. A numerical simulation was used to describe a method for estimating the OCR of spheroids that settled at the bottom of the conventional culture plates. The OCR per spheroid volume decreased with increasing spheroid radius, indicating the limitation of the oxygen supply to the core of the MCF-7 spheroid. Formation of the necrotic-like core did not affect the oxygen metabolism significantly, implying that the core had minimal contribution to the OCR even before necrosis occurred. OCR analysis using SECM non-invasively monitors the change of oxygen metabolism in tumour spheroids. The approach is promising to evaluate various three-dimensional culture models.


Subject(s)
Neoplasms , Spheroids, Cellular , Cell Hypoxia , Humans , Necrosis , Oxygen , Oxygen Consumption
9.
Micromachines (Basel) ; 11(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456040

ABSTRACT

Mammalian cell analysis is essential in the context of both fundamental studies and clinical applications. Among the various techniques available for cell analysis, electrochemiluminescence (ECL) has attracted significant attention due to its integration of both electrochemical and spectroscopic methods. In this review, we summarize recent advances in the ECL-based systems developed for mammalian cell analysis. The review begins with a summary of the developments in luminophores that opened the door to ECL applications for biological samples. Secondly, ECL-based imaging systems are introduced as an emerging technique to visualize single-cell morphologies and intracellular molecules. In the subsequent section, the ECL sensors developed in the past decade are summarized, the use of which made the highly sensitive detection of cell-derived molecules possible. Although ECL immunoassays are well developed in terms of commercial use, the sensing of biomolecules at a single-cell level remains a challenge. Emphasis is therefore placed on ECL sensors that directly detect cellular molecules from small portions of cells or even single cells. Finally, the development of bipolar electrode devices for ECL cell assays is introduced. To conclude, the direction of research in this field and its application prospects are described.

10.
Adv Biosyst ; 4(4): e1900234, 2020 04.
Article in English | MEDLINE | ID: mdl-32293161

ABSTRACT

Biofabrication is roughly defined as techniques producing complex 2D and 3D tissues and organs from raw materials such as living cells, matrices, biomaterials, and molecules. It is useful for tissue engineering, regenerative medicine, drug screening, and organs-on-a-chip. Biofabrication could be carried out by microfluidic techniques, optical methods, microfabrication, 3D bioprinting, etc. Meanwhile, electrochemical devices and/or systems have also been reported. In this progress report, the recent advances in applying these devices/systems for biofabrication are summarized. After introducing the concept of biofabrication, biofabrication strategies using electrochemical approaches are summarized. Then, various electrochemical systems such as probes and chip devices are described. Next, the biofabrication of hydrogels for 3D cell culture, electrochemical modification on cell culture surfaces, electrodeposition of conductive materials in hydrogels for cell culture, and biofabrication of cell aggregates using dielectrophoresis is discussed. In addition, electrochemical stimulation methods such as electrotaxis are mentioned as promising techniques for biofabrication. Finally, future research directions in this field and the application prospects are highlighted.


Subject(s)
Bioprinting , Electrochemical Techniques , Hydrogels/chemistry , Lab-On-A-Chip Devices , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Humans
11.
ACS Sens ; 5(3): 740-745, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31997640

ABSTRACT

Cell aggregates have attracted much attention owing to their potential applications in tissue engineering and drug screening. To evaluate cellular respiration of individual cell aggregates in these applications, noninvasive and on-chip high-throughput analytical tools are necessary. Electrochemical methods for detecting oxygen concentrations are useful because of their noninvasiveness. However, these conventional methods may be unsuitable for high-throughput detection because it is difficult to prepare many electrodes on a small chip owing to the limitation of area for connecting electrodes. Alternatively, a bipolar electrode (BPE) system offers clear advantages. In this system, electrochemical reactions are induced at both ends of a BPE without complex wiring. In this study, we present a BPE array for detecting the respiratory activity of cell aggregates. Oxygen concentrations near cell aggregates at cathodic poles of BPEs were converted to electrochemiluminescence (ECL) signals of [Ru(bpy)3]2+/tripropylamine at anodic poles of BPEs. To separate ECL chemicals from cell aggregates, we fabricated a closed BPE device containing analytical and reporter chambers. As a proof of concept, 32 BPEs were controlled wirelessly using a pair of driving electrodes, and the respiratory activities of individual MCF-7 cell aggregates as a cancer model were successfully detected by monitoring ECL signals. Compared with conventional electrode arrays for cell analysis, the wiring of the current device was simple because the multiple BPEs functioned with only a single power supply. To the best of our knowledge, this is the first study of on-chip analysis of cellular activity using a BPE system.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Cell Respiration , Electrodes , Humans , Luminescence , MCF-7 Cells
12.
Front Chem ; 7: 396, 2019.
Article in English | MEDLINE | ID: mdl-31214576

ABSTRACT

Microfluidic devices are widely used for cell analysis, including applications for single-cell analysis, healthcare, environmental monitoring, and organs-on-a-chip that mimic organs in microfluidics. Moreover, to enable high-throughput cell analysis, real-time monitoring, and non-invasive cell assays, electric and electrochemical systems have been incorporated into microfluidic devices. In this mini-review, we summarize recent advances in these systems, with applications from single cells to three-dimensional cultured cells and organs-on-a-chip. First, we summarize microfluidic devices combined with dielectrophoresis, electrophoresis, and electrowetting-on-a-dielectric for cell manipulation. Next, we review electric and electrochemical assays of cells to determine chemical section activity, and oxygen and glucose consumption activity, among other applications. In addition, we discuss recent devices designed for the electric and electrochemical collection of cell components from cells. Finally, we highlight the future directions of research in this field and their application prospects.

13.
Anal Chem ; 89(19): 10303-10310, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28876053

ABSTRACT

The O2 consumption rate of embryos has been attracting much attention as a key indicator of cell metabolisms and development. In this study, we propose an on-chip device that enables the accurate, easy, and noninvasive measurement of O2 consumption rates of single embryos. Pt electrodes and micropits for embryo settlement were fabricated on Si chips via microfabrication techniques. The configuration of the device enables the detection of O2 concentration profiles surrounding the embryos by settling embryos into the pits with a mouth pipet. Moreover, as the detection is based on an electrochemical method, the influence of O2 consumption on the electrodes was also considered. By using a simulator (COMSOL Multiphysics), we estimated the O2 concentration profiles in the device with and without the effects of the electrodes. Based on the simulation results, we developed a normalization process to calculate the precise O2 consumption rate of the sample. Finally, using both the measurement system and the algorithm for the analysis, the respiratory activities of mouse embryos were successfully measured.


Subject(s)
Electrochemical Techniques/methods , Embryo, Mammalian/metabolism , Oxygen/analysis , Algorithms , Animals , Blastocyst/cytology , Blastocyst/metabolism , Electrochemical Techniques/instrumentation , Electrodes , Female , Lab-On-A-Chip Devices , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...