Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nat Commun ; 15(1): 3367, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719808

ABSTRACT

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Electron Transport Complex I , Ubiquinone/analogs & derivatives , Animals , Anthelmintics/pharmacology , Anthelmintics/chemistry , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Caenorhabditis elegans/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Species Specificity , Quinones/chemistry , Quinones/pharmacology , Quinones/metabolism , Biological Products/pharmacology , Biological Products/chemistry
2.
Biochem Biophys Res Commun ; 708: 149801, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38531219

ABSTRACT

Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 µM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 µM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.


Subject(s)
Amiodarone , NF-kappa B , Humans , NF-kappa B/metabolism , Intercellular Adhesion Molecule-1/metabolism , Toll-Like Receptor 3/metabolism , Endothelial Cells/metabolism , Amiodarone/pharmacology , Amiodarone/metabolism , Cells, Cultured , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism , Organelles/metabolism , Hydrogen-Ion Concentration
3.
Eur J Pharmacol ; 969: 176458, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38395373

ABSTRACT

Alantolactone is a eudesmane-type sesquiterpene lactone that exerts various biological effects, including anti-inflammatory activity. In the present study, screening using the RIKEN Natural Products Depository chemical library identified alantolactone derivatives that inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells stimulated with proinflammatory cytokines and Toll-like receptor ligands. In human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α), six alantolactone derivatives inhibited ICAM-1 expression in a dose-dependent manner and at IC50 values of 13-21 µM, whereas that of alantolactone was 5 µM. Alantolactone possesses an α-methylene-γ-lactone moiety, whereas alantolactone derivatives do not. In the nuclear factor κB (NF-κB) signaling pathway, alantolactone prevented the TNF-α-induced phosphorylation and degradation of the inhibitor of NF-κB α (IκBα) protein, and its downstream signaling pathway. In contrast, alantolactone derivatives neither reduced TNF-α-induced IκBα degradation nor the nuclear translocation of the NF-κB subunit RelA, but inhibited the binding of RelA to the ICAM-1 promoter. The inhibitory activities of alantolactone and alantolactone derivatives were attenuated by glutathione. These results indicate that alantolactone derivatives inhibit the TNF-α-induced NF-κB pathway by a different mechanism from alantolactone.


Subject(s)
Lung Neoplasms , Sesquiterpenes, Eudesmane , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , NF-KappaB Inhibitor alpha , Intercellular Adhesion Molecule-1/metabolism , Lactones/pharmacology , Sesquiterpenes, Eudesmane/pharmacology , Human Umbilical Vein Endothelial Cells , Lung Neoplasms/metabolism
4.
Cell Chem Biol ; 30(7): 795-810.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369212

ABSTRACT

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Aspergillus fumigatus , Virulence , Microbial Sensitivity Tests
5.
J Biol Chem ; 298(12): 102635, 2022 12.
Article in English | MEDLINE | ID: mdl-36273581

ABSTRACT

Cancer cells intrinsically proliferate in an autonomous manner; however, the expansion of cancer cell areas in a tissue is known to be regulated by surrounding nontransformed cells. Whether these nontransformed cells can be targeted to control the spread of cancer cells is not understood. In this study, we established a system to evaluate the cancer-inhibitory activity of surrounding nontransformed cells and screened chemical compounds that could induce this activity. Our findings revealed that lonidamine (LND) and domperidone (DPD) inhibited expansion of oncogenic foci of KRASG12D-expressing transformed cells, whereas they did not inhibit the proliferation of monocultured KRASG12D-expressing cells. Live imaging revealed that LND and DPD suppressed the movement of nontransformed cells away from the attaching cancer cells. Moreover, we determined that LND and DPD promoted stress fiber formation, and the dominant-negative mutant of a small GTPase RhoA relieved the suppression of focus expansion, suggesting that RhoA-mediated stress fiber formation is involved in the inhibition of the movement of nontransformed cells and focus expansion. In conclusion, we suggest that elucidation of the mechanism of action of LND and DPD may lead to the development of a new type of drug that could induce the anticancer activity of surrounding nontransformed cells.


Subject(s)
Antineoplastic Agents , Domperidone , Indazoles , Neoplasms , Domperidone/pharmacology , Indazoles/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Mice , Epithelial Cells , Mammary Glands, Animal/cytology , Drug Screening Assays, Antitumor
6.
ACS Pharmacol Transl Sci ; 5(9): 811-818, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36110376

ABSTRACT

Bexarotene, a retinoid X receptor (RXR) agonist, is used to treat cutaneous T-cell lymphoma, and drug repositioning research has also been reported, despite warnings of teratogenicity. However, fetal transfer of bexarotene and its effect on rat fetal bone formation have not been examined. In this study, we conducted a detailed teratogenicity and fetal transferability assessment of bexarotene in rats. Repeated administration of bexarotene during pregnancy caused marked fetal atrophy and bone dysplasia. Although fetal transfer was not detectable by dynamic imaging of [11C]bexarotene by means of positron emission tomography, transfer to the fetus was confirmed by using a gamma counter. Similar levels were found in mother and fetus. In addition, we found that bexarotene was accumulated in the placenta. These findings will be useful for the toxicity assessment of bexarotene as well as for drug discovery research targeting RXR agonists, which are expected to have therapeutic effects in various diseases.

7.
ACS Omega ; 7(28): 24184-24189, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874269

ABSTRACT

In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.

8.
Nat Commun ; 13(1): 3634, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752611

ABSTRACT

Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.


Subject(s)
Azoles , Fluconazole , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles/pharmacology , Biofilms , Candida albicans , Drug Resistance, Fungal , Fluconazole/pharmacology , Homeostasis , Microbial Sensitivity Tests , Rats
9.
Viruses ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36680045

ABSTRACT

Bovine leukemia virus (BLV) infection causes endemic bovine leukemia and lymphoma, resulting in lower carcass weight and reduced milk production by the infected cattle, leading to economic losses. Without effective measures for treatment and prevention, high rates of BLV infection can cause problems worldwide. BLV research is limited by the lack of a model system to assay infection. To overcome this, we previously developed the luminescence syncytium induction assay (LuSIA), a highly sensitive and objectively quantifiable method for visualizing BLV infectivity. In this study, we applied LuSIA for the high-throughput screening of drugs that could inhibit BLV infection. We screened 625 compounds from a chemical library using LuSIA and identified two that markedly inhibited BLV replication. We then tested the chemical derivatives of those two compounds and identified BSI-625 and -679 as potent inhibitors of BLV replication with low cytotoxicity. Interestingly, BSI-625 and -679 appeared to inhibit different steps of the BLV lifecycle. Thus, LuSIA was applied to successfully identify inhibitors of BLV replication and may be useful for the development of anti-BLV drugs.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Animals , Cattle , Luminescence , Biological Assay , Giant Cells
10.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34918053

ABSTRACT

Plant development depends on the activity of pluripotent stem cells in meristems, such as the shoot apical meristem and the flower meristem. In Arabidopsis thaliana, WUSCHEL (WUS) is essential for stem cell homeostasis in meristems and integument differentiation in ovule development. In rice (Oryza sativa), the WUS ortholog TILLERS ABSENT 1 (TAB1) promotes stem cell fate in axillary meristem development, but its function is unrelated to shoot apical meristem maintenance in vegetative development. In this study, we examined the role of TAB1 in flower development. The ovule, which originates directly from the flower meristem, failed to differentiate in tab1 mutants, suggesting that TAB1 is required for ovule formation. Expression of a stem cell marker was completely absent in the flower meristem at the ovule initiation stage, indicating that TAB1 is essential for stem cell maintenance in the 'final' flower meristem. The ovule defect in tab1 was partially rescued by floral organ number 2 mutation, which causes overproliferation of stem cells. Collectively, it is likely that TAB1 promotes ovule formation by maintaining stem cells at a later stage of flower development.


Subject(s)
Cell Differentiation/genetics , Flowers/genetics , Oryza/genetics , Plant Proteins/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Meristem/genetics , Meristem/growth & development , Mutation/genetics , Oryza/growth & development , Ovule/genetics , Ovule/growth & development , Plant Development/genetics , Stem Cells/cytology
11.
J Chem Inf Model ; 61(9): 4156-4172, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34318674

ABSTRACT

A common strategy for identifying molecules likely to possess a desired biological activity is to search large databases of compounds for high structural similarity to a query molecule that demonstrates this activity, under the assumption that structural similarity is predictive of similar biological activity. However, efforts to systematically benchmark the diverse array of available molecular fingerprints and similarity coefficients have been limited by a lack of large-scale datasets that reflect biological similarities of compounds. To elucidate the relative performance of these alternatives, we systematically benchmarked 11 different molecular fingerprint encodings, each combined with 13 different similarity coefficients, using a large set of chemical-genetic interaction data from the yeast Saccharomyces cerevisiae as a systematic proxy for biological activity. We found that the performance of different molecular fingerprints and similarity coefficients varied substantially and that the all-shortest path fingerprints paired with the Braun-Blanquet similarity coefficient provided superior performance that was robust across several compound collections. We further proposed a machine learning pipeline based on support vector machines that offered a fivefold improvement relative to the best unsupervised approach. Our results generally suggest that using high-dimensional chemical-genetic data as a basis for refining molecular fingerprints can be a powerful approach for improving prediction of biological functions from chemical structures.


Subject(s)
Machine Learning , Support Vector Machine , Databases, Factual
12.
Plant J ; 104(2): 351-364, 2020 10.
Article in English | MEDLINE | ID: mdl-32652697

ABSTRACT

The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.


Subject(s)
Meristem/physiology , Oryza/physiology , Plant Leaves/growth & development , Plant Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Knockout Techniques , Histone Acetyltransferases/genetics , Multiprotein Complexes , Mutation , Oryza/growth & development , Peptide Elongation Factors/genetics , Phenotype , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Protein Subunits , Saccharomyces cerevisiae Proteins/genetics
13.
Sci Rep ; 10(1): 8691, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457324

ABSTRACT

Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.


Subject(s)
Arabidopsis/drug effects , Electron Transport Complex I/metabolism , Salt Tolerance/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Electron Transport Complex I/antagonists & inhibitors , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Rotenone/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Sodium Chloride/pharmacology
14.
New Phytol ; 225(2): 974-984, 2020 01.
Article in English | MEDLINE | ID: mdl-31486529

ABSTRACT

Shoot branches are formed from the axillary meristem and their formation is a key process in plant development. Although our understanding of the mechanisms underlying stem cell maintenance in the shoot apical meristem (SAM) is progressing, our knowledge of these mechanisms during the process of axillary meristem development is insufficient. To elucidate the genetic mechanisms underlying axillary meristem development in rice (Oryza sativa), we undertook a molecular genetic analysis focusing on TILLERS ABSENT1 (TAB1) and FLORAL ORGAN NUMBER2 (FON2), respective orthologs of the WUSCHEL and CLAVATA3 genes involved in SAM maintenance in Arabidopsis (Arabidopsis thaliana). We revealed that stem cells were established at an early stage of axillary meristem development in the wild-type, but were not maintained in tab1. By contrast, the stem cell region and TAB1 expression domain were expanded in fon2, and FON2 overexpression inhibited axillary meristem formation. These results indicate that TAB1 is required to maintain stem cells during axillary meristem development, whereas FON2 negatively regulates stem cell fate by restricting TAB1 expression. Thus, the genetic pathway regulating SAM maintenance in Arabidopsis seems to have been recruited to play a specific role within a narrow developmental window - namely, axillary meristem establishment - in rice.


Subject(s)
Meristem/cytology , Meristem/growth & development , Oryza/cytology , Oryza/growth & development , Plant Proteins/metabolism , Stem Cells/cytology , Mutation/genetics , Oryza/anatomy & histology , Phenotype , Stem Cells/metabolism , Suppression, Genetic
15.
Plant Cell Physiol ; 61(3): 457-469, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31697317

ABSTRACT

In plants, reversible histone acetylation and deacetylation play a crucial role in various biological activities, including development and the response to environmental stress. Histone deacetylation, which is generally associated with gene silencing, is catalyzed by multiple histone deacetylases (HDACs). Our understanding of HDAC function in plant development has accumulated from molecular genetic studies in Arabidopsis thaliana. By contrast, how HDACs contribute to the development of rice (Oryza sativa) is poorly understood and no rice mutants of HDAC have been reported. Here we have characterized a new rice mutant showing semi-dwarfism, which we named dwarf with slender leaf1 (dsl1). The mutant showed pleiotropic defects in both vegetative and reproductive developments; e.g. dsl1 produced short and narrow leaves, accompanied by a reduction in the number and size of vascular bundles. The semi-dwarf phenotype was due to suppression of the elongation of some culm (stem) internodes. Interestingly, despite this suppression of the upper internodes, the elongation and generation of lower internodes were slightly enhanced. Inflorescence and spikelet development were also affected by the dsl1 mutation. Some of the observed morphological defects were related to a reduction in cell numbers, in addition to reduced cell division in leaf primordia revealed by in situ hybridization analysis, suggesting the possibility that DSL1 is involved in cell division control. Gene cloning revealed that DSL1 encodes an HDAC belonging to the reduced potassium dependence3/histone deacetylase1 family. Collectively, our study shows that the HDAC DSL1 plays diverse and important roles in development in rice.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Oryza/growth & development , Oryza/metabolism , Cell Division , Cloning, Molecular , Genes, Plant , Histones/metabolism , Mutation , Oryza/genetics , Phenotype , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Shoots/cytology , Plant Shoots/growth & development
16.
Sci Rep ; 9(1): 18023, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792277

ABSTRACT

Information about substrate and product selectivity is critical for understanding the function of cytochrome P450 monooxygenases. In addition, comprehensive understanding of changes in substrate selectivity of P450 upon amino acid mutation would enable the design and creation of engineered P450s with desired selectivities. Therefore, systematic methods for obtaining such information are required. Herein, we developed an integrated P450 substrate screening system for the selection of "exemplary" substrates for a P450 of interest. The established screening system accurately selected the known exemplary substrates and also identified previously unknown exemplary substrates for microbial-derived P450s from a library containing sp3-rich synthetic small molecules. Synthetically potent transformations were also found by analyzing the reactions and oxidation products. The screening system was applied to analyze the substrate selectivity of the P450 BM3 mutants F87A and F87A/A330W, which acquired an ability to hydroxylate non-natural substrate steroids regio- and stereoselectively by two amino acid mutations. The distinct transition of exemplary substrates due to each single amino acid mutation was revealed, demonstrating the utility of the established system.


Subject(s)
Bacterial Proteins/metabolism , Catalytic Domain/genetics , Cytochrome P-450 Enzyme System/metabolism , Protein Engineering/methods , Amino Acid Sequence/genetics , Bacillus megaterium/enzymology , Bacillus megaterium/genetics , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Feasibility Studies , Mutation , Oxidation-Reduction , Steroids/metabolism , Substrate Specificity/genetics
17.
Plant Signal Behav ; 14(9): 1640565, 2019.
Article in English | MEDLINE | ID: mdl-31284830

ABSTRACT

Stem cell maintenance in the shoot apical meristem (SAM) is very important for plant development and is regulated by the WUSCHEL-CLAVATA (WUS-CLV) feedback loop in Arabidopsis (Arabidopsis thaliana). WUS promotes stem cell identity, whereas CLV negatively regulates stem cell proliferation by repressing WUS expression. We previously showed that, in rice (Oryza sativa), the WUS ortholog TILLERS ABSENT1 (TAB1, also known as OsWUS) has no function in SAM maintenance, whereas it plays a crucial role in axillary meristem development. Recently, we showed that a double mutant of FLORAL ORGAN NUMBER2 (FON2) and ABERRANT SPIKELET AND PANICLE1 (ASP1) led to a marked enlargement of the inflorescence meristem, and that the TAB1 function is not associated with massive stem cells in this meristem. In this paper, we confirmed that TAB1 is also unrelated to the enlargement of the SAM in the vegetative phase of the fon2 and fon2 asp1 mutants. In addition, misexpression of TAB1 under the promoter of FON1 led to a slight reduction of the SAM size in wild type, suggesting that TAB1 is not a positive regulator of stem cells. Taking together, TAB1 seems not to be involved in meristem maintenance, irrespective of the meristem type.


Subject(s)
Arabidopsis Proteins/chemistry , Homeodomain Proteins/chemistry , Meristem/cytology , Meristem/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Stem Cells/metabolism , Mutation/genetics , Organ Size , Oryza/anatomy & histology , Plant Proteins/genetics
18.
Bioorg Med Chem ; 27(14): 3128-3134, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31176570

ABSTRACT

Bexarotene (1), a retinoid X receptor (RXR) agonist approved for the treatment of cutaneous T cell lymphoma (CTCL), was reported to migrate into baboon brain based on findings obtained by positron emission tomography (PET) with a 11C-labeled tracer. However, co-administration of non-radioactive 1 had no effect on the distribution of [11C]1, probably due to non-specific binding of 1 as a result of its high lipophilicity. Here, we report a fluorine-18 (18F)-labeled PET tracer [18F]6 derived from RXR partial agonist CBt-PMN (2), which has lower lipophilicity and weaker RXR-binding ability than [11C]1. The concomitant administration of 1 or 2 with [18F]6 with resulted in decreased accumulation of [18F]6 in liver, together with increased brain uptake and increased accumulation in kidney and muscle, as visualized by PET. A plausible explanation of these findings is the inhibition of [18F]6 uptake into the liver by concomitantly administered 1 or 2, leading to an increase in blood concentration of [18F]6 followed by increased accumulation in other tissues.


Subject(s)
Fluorine Radioisotopes/therapeutic use , Retinoid X Receptors/chemistry , Fluorine Radioisotopes/pharmacology , Humans , Ligands
19.
Plant Physiol ; 180(3): 1520-1534, 2019 07.
Article in English | MEDLINE | ID: mdl-31079034

ABSTRACT

Stem cell homeostasis is maintained by the WUSCHEL-CLAVATA (WUS-CLV) negative feedback loop in Arabidopsis (Arabidopsis thaliana). In rice (Oryza sativa), FLORAL ORGAN NUMBER2 (FON2) functions in the negative regulation of stem cell proliferation, similar to Arabidopsis CLV3 In this study, through genetic enhancer analysis, we found that loss of function of ABERRANT SPIKELET AND PANICLE1 (ASP1), encoding an Arabidopsis TOPLESS (TPL)-like transcriptional corepressor, enhances the fon2 flower phenotype, which displayed an increase in floral organ number. In the fon2 asp1 double mutant, the inflorescence was severely affected, resulting in bifurcation of the main axis (rachis), a phenotype that has not previously been reported. The stem cells showed marked overproliferation in fon2 asp1, resulting in extreme enlargement and splitting of the inflorescence meristem. These results suggest that ASP1 and FON2 synergistically regulate stem cell maintenance in rice. Unexpectedly, genetic analysis indicated that TILLERS ABSENT1, the rice ortholog of WUS, is not involved in promoting stem cell proliferation in this meristem. Transcriptome analysis suggested that ASP1 and FON signaling negatively regulate a set of genes with similar functions, and they act on these genes in concert. Taken together, our results suggest that TPL-like corepressor activity plays a crucial role in meristem maintenance, and that stem cell proliferation is properly maintained via the cooperation of ASP1 and FON2.


Subject(s)
Co-Repressor Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Meristem/genetics , Oryza/genetics , Plant Proteins/genetics , Signal Transduction/genetics , Cell Proliferation/genetics , Flowers/cytology , Flowers/ultrastructure , Gene Expression Profiling/methods , Gene Ontology , Meristem/cytology , Meristem/ultrastructure , Microscopy, Electron, Scanning , Mutation , Oryza/cytology , Plants, Genetically Modified , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...