Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Front Aging Neurosci ; 16: 1273738, 2024.
Article in English | MEDLINE | ID: mdl-38352236

ABSTRACT

Background: Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets. Therefore, this study aimed to investigate the relationships among MEG oscillatory parameters, clinically validated biomarkers computed from rCBF, and NPAs using outpatient data retrieved from hospital records. Methods: Clinical data from 64 individuals with mixed pathological backgrounds were retrieved and analysed. MEG oscillatory parameters, including relative power (RP) from delta to high gamma bands, mean frequency, individual alpha frequency, and Shannon's spectral entropy, were computed for each cortical region. For SPECT data, three pathological parameters-'severity', 'extent', and 'ratio'-were computed using an easy z-score imaging system (eZIS). As for NPAs, the MMSE and FAB scores were retrieved. Results: MEG oscillatory parameters were correlated with eZIS parameters. The eZIS parameters associated with Alzheimer's disease pathology were reflected in theta power augmentation and slower shift of the alpha peak. Moreover, MEG oscillatory parameters were found to reflect NPAs. Global slowing and loss of diversity in neural oscillatory components correlated with MMSE and FAB scores, whereas the associations between eZIS parameters and NPAs were sparse. Conclusion: MEG oscillatory parameters correlated with both SPECT (i.e. eZIS) parameters and NPAs, supporting the clinical validity of MEG oscillatory parameters as pathological and symptomatic indicators. The findings indicate that various components of MEG oscillatory characteristics can provide valuable pathological and symptomatic information, making MEG data a rich resource for clinical examinations of patients with cognitive impairments. SPECT (i.e. eZIS) parameters showed no correlations with NPAs. The results contributed to a better understanding of the characteristics of electrophysiological and pathological examinations for patients with cognitive impairments, which will help to facilitate their co-use in clinical application, thereby improving patient care.

2.
Int J Cosmet Sci ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38327040

ABSTRACT

OBJECTIVE: Tyrosinase inhibitors suppress melanogenesis in melanocytes. During a screening for tyrosinase inhibitors, however, we noticed some discrepancies in inhibitory efficacies between melanocytes and in vitro assays. The compound (S)-N-{3-[4-(dimethylamino)phenyl]propyl}-N-methyl-indan-1-amine (GIF-2115) exerts antioxidative stress activity upon accumulation in late endosomes and lysosomes. GIF-2115 was also identified as a potent antimelanogenic reagent in B16F10 mouse melanoma cells. GIF-2115 inhibited the activity of mushroom tyrosinase and the lysates of B16F10 cells. However, structure-activity relationship studies indicated that GIF-2238, which lacks the benzene ring in the aminoindan structure of GIF-2115, inhibited tyrosinase activity in vitro but did not inhibit melanogenesis in B16F10 cells. The aim of the present study is to show the importance of the intracellular distribution of tyrosinase inhibitors in exerting their antimelanogenic activity in melanocytes. METHODS: The intracellular distribution of compounds was monitored by linking with the fluorescent group of 7-nitro-2,1,3-benzoxadiazole (NBD). To mislocalize GIF-2115 to mitochondria, the mitochondria-preferring fluoroprobe ATTO565 was used. RESULTS: We reconfirmed the localization of GIF-2250 (GIF-2115-NBD) not only to matured but also to early-stage melanosomes. Although GIF-2286 (GIF-2238-NBD) maintained tyrosinase inhibitory activity, it did not show specific intracellular localization. Moreover, when GIF-2115 was linked with ATTO565, the resultant compound GIF-2265 did not inhibit melanogenesis in B16F10 cells, despite its strong tyrosinase inhibitory activity. CONCLUSION: These results suggest that melanosomal localization is essential for the antimelanogenic activity of GIF-2115, and GIF-2115 derivatives may be new guides for drugs to endosomes and lysosomes as well as melanosomes.


OBJECTIF: Les inhibiteurs de la tyrosinase suppriment la mélanogenèse dans les mélanocytes. Lors d'un criblage d'inhibiteurs de la tyrosinase, cependant, nous avons remarqué des différences dans les efficacités inhibitrices entre les mélanocytes et les essais in vitro. Le composé (S)-N-{3-[4-(diméthylamino)phényl]propyl}-N-méthyl-indan-1-amine (GIF-2115) exerce une activité antioxydante en cas de stress lors de l'accumulation dans les endosomes tardifs et les lysosomes. GIF-2115 a également été identifié comme un puissant réactif antimélanogène dans les cellules de mélanome murin B16F10. GIF-2115 a inhibé l'activité de la tyrosinase de champignon et les lysats des cellules B16F10. Cependant, des études de relation structure-activité ont indiqué que GIF-2238, à qui il manque l'anneau benzénique dans la structure aminoindan de GIF-2115, inhibait l'activité de la tyrosinase in vitro mais n'inhibait pas la mélanogenèse dans les cellules B16F10. L'objectif de la présente étude est de montrer l'importance de la distribution intracellulaire des inhibiteurs de la tyrosinase dans l'exercice de leur activité antimélanogène dans les mélanocytes. MÉTHODES: La distribution intracellulaire des composés a été surveillée en les liant au groupe fluorescent de la 7-nitro-2,1,3-benzoxadiazole (NBD). Pour délocaliser GIF-2115 vers les mitochondries, le fluorophore ATTO565 préférant les mitochondries a été utilisé. RÉSULTATS: Nous avons confirmé la localisation de GIF-2250 (GIF-2115-NBD) non seulement dans les mélanosomes matures mais aussi dans les mélanosomes à un stade précoce. Bien que GIF-2286 (GIF-2238-NBD) ait maintenu une activité inhibitrice de la tyrosinase, il n'a pas montré de localisation intracellulaire spécifique. De plus, lorsque GIF-2115 a été lié à ATTO565, le composé résultant GIF-2265 n'a pas inhibé la mélanogenèse dans les cellules B16F10, malgré son activité inhibitrice de la tyrosinase forte. CONCLUSION: Ces résultats suggèrent que la localisation dans les mélanosomes est essentielle pour l'activité antimélanogène de GIF-2115, et que les dérivés de GIF-2115 peuvent être de nouveaux guides pour les médicaments vers les endosomes et les lysosomes ainsi que les mélanosomes.

3.
Clin Case Rep ; 12(1): e8385, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38161650

ABSTRACT

Key Clinical Message: Cognitive impairment associated dementia is treatable non-pharmacologically. Monitoring tools are important to provide proper treatment. The present study showed that the resting-state brain activity measured using magnetoencephalography reflects their outcomes and captures clinical impressions better than neuropsychological assessments, which have inherent limitations such as the practice effect. Abstract: Mild cognitive impairment (MCI) is a prodromal phase of dementia caused by brain diseases. Non-pharmacological treatments are sometimes effective in improving patient's cognition and quality of life. To provide better treatments, monitoring the treatment outcomes, which is done using neuropsychological assessments, is important. However, these assessments have inherent limitations, such as practice effects. Therefore, complementary assessments are anticipated. Magnetoencephalography (MEG) is a neuroimaging technique that is sensitive to changes in brain activity associated with cognitive impairment. It represents the state of brain activity in terms of MEG spectral parameters associated with neuropsychological assessment scores. MEG spectral parameters could reasonably be used to monitor treatment outcomes without the aforementioned limitations. However, few published longitudinal reports have assessed MEG spectral parameters during the non-pharmacological treatment period for cognitive impairment associated with dementia. In this study, we retrospectively examined the clinical records of two patients with MCI. Changes in neuropsychological assessment scores and MEG spectral parameters were qualitatively evaluated along with the patients' conditions, as described in the medical records during non-pharmacological treatments provided for more than 2 years. The changes in neuropsychological assessment scores and MEG spectral parameters showed comparable trends, with some discrepancies. Changes in MEG spectral parameters were more consistent with the subjective reports from caregivers and medical staff in the medical records. Our results suggest that MEG is a promising tool for monitoring patient conditions during treatment.

4.
Biochem Biophys Res Commun ; 696: 149505, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38219490

ABSTRACT

Exosomes are small extracellular vesicles (EVs) found in culture supernatants, blood, and breast milk. The size of these nanocomplexes limits the methods of EV analyses. In this study, nitrobenzoxadiazole (NBD), a fluorophore, conjugated endosome-lysosome imager, GIF-2250 and its derivative, GIF-2276, were evaluated for exosome analyses. A correlation was established between GIF-2250 intensity and protein maker levels in bovine milk exosomes. We found that high-temperature sterilization milk may not contain intact exosomes. For precise analysis, we synthesized GIF-2276, which allows for the covalent attachment of NBD to the Lys residue of exosome proteins, and labeled milk exosomes were separated using a gel filtration system. GIF-2276 showed chromatographic peaks of milk exosomes containing >3 ng protein. The area (quantity) and retention time (size) of the exosome peaks were correlated to biological activity (NO synthesis suppression in RAW264.7 murine macrophages). Heat denaturation of purified milk-derived exosomes disrupted these indicators. Proteome analyses revealed GIF-2276-labeled immunomodulators, such as butyrophilin subfamily 1 member A1 and polymeric immunoglobulin receptor. The immunogenicity and quantity of these factors decreased by heat denaturation. When milk exosomes were purified from market-sourced milk we found that raw and low-temperature sterilization milk samples, contained exosomes (none in high-temperature sterilization milk). These results were also supported by transmission electron microscopy analyses. We also found that GIF-2276 could monitor exosome transportation into HEK293 cells. These results suggested that GIF-2250/2276 may be helpful to evaluate milk exosomes.


Subject(s)
Exosomes , Extracellular Vesicles , Female , Humans , Mice , Animals , Milk/metabolism , Exosomes/metabolism , HEK293 Cells , Milk, Human , Proteome/metabolism
5.
RSC Adv ; 13(46): 32276-32281, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37928844

ABSTRACT

We previously reported that N,N-dimethylaniline derivatives are potent ferroptosis inhibitors. Among them, the novel aminoindan derivative GIF-2197-r (the racemate of GIF-2115 (R-form) and GIF-2196 (S-form)) is effective at a concentration of 0.01 µM due to its localization to lysosomes and ferrous ion coordination capacity. The current study demonstrates that the aliphatic tertiary amine moiety of GIF-2197-r is responsible for lysosomal localization. Although N,N-dimethylaniline derivatives cannot form chelate structures with Fe2+, density functional theory computation demonstrates that they can form stable monodentate complexes with a hydrated ferrous ion, likely due to the highly electron-rich nature of the (dialkylamino)phenyl ring. Furthermore, the results suggest that the aliphatic tertiary amine moiety contributes to stabilizing the complexation. These findings could prove useful for developing improved lysosomotropic ferroptosis inhibitors for neurodegenerative diseases.

6.
Hum Brain Mapp ; 44(17): 6214-6226, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37791985

ABSTRACT

Cognitive impairment is a major concern in clinical medicine. It is usually evaluated with neuropsychological assessments, which have inherent limitations. To compensate for them, magnetoencephalography has already come into clinical use to evaluate the level of cognitive impairment. It evaluates global changes in the frequency of resting-state brain activity, which are associated with cognitive status. However, it remains unclear what neural mechanism causes the frequency changes. To understand this, it is important to identify cortical regions that mainly contribute to these changes. We retrospectively analysed the clinical records from 310 individuals with cognitive impairment who visited the outpatient department at our hospital. The analysis included resting-state magnetoencephalography, neuropsychological assessment, and clinical diagnosis data. Regional oscillatory intensities were estimated from the magnetoencephalography data, which were statistically analysed, along with neuropsychological assessment scores, and the severity of cognitive impairment associated with clinical diagnosis. The regional oscillatory intensity covering a wide range of regions and frequencies was significantly associated with neuropsychological assessment scores and differed between healthy individuals and patients with cognitive impairment. However, these associations and differences in all conditions were overlapped by a single change in beta frequency in the left supramarginal gyrus. High frequency oscillatory intensity in the left supramarginal gyrus is associated with cognitive impairment levels among patients who were concerned about dementia. It provides new insights into cognitive status measurements using magnetoencephalography, which is expected to develop as an objective index to be used alongside traditional neuropsychological assessments.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Brain/diagnostic imaging , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Parietal Lobe/diagnostic imaging
7.
J Neuroendovasc Ther ; 17(3): 73-79, 2023.
Article in English | MEDLINE | ID: mdl-37502350

ABSTRACT

Objective: Antiplatelet therapy is advised to prevent thrombotic complications during endovascular coil embolization of unruptured cerebral aneurysms. Due to multiple antithrombotic treatments, bleeding risk is a concern in patients using oral anticoagulants for existing comorbidities. We investigated the hemorrhagic and ischemic events following endovascular treatment (EVT) of unruptured cerebral aneurysms in patients taking anticoagulation and antiplatelet therapy. Methods: Between March 2013 and February 2019, 262 patients undergoing EVT for unruptured cerebral aneurysms and having at least 6 months of postoperative follow-up data were included in this retrospective study. Patients taking oral anticoagulants and antiplatelet drugs for cerebral vascular events following EVT were compared with those taking only antiplatelet agents. Results: Of the 262 patients, 12 (4.6%) used anticoagulants before EVT for a preexisting condition. Cerebrovascular events after coil embolization were observed in 3 patients taking both anticoagulant and antiplatelet drugs and in 14 patients taking only antiplatelet drugs (25% vs. 5.6%, respectively, p = 0.035). Vitamin K antagonist (VKA) was administered in five patients and direct oral anticoagulants (DOACs) in seven patients. Patients taking VKA experienced cerebrovascular events, whereas those taking DOACs did not (p = 0.045). Conclusion: Our study showed that patients using oral anticoagulants and antiplatelet drugs experienced more cerebrovascular events after EVT for unruptured cerebral aneurysms. These results suggest that in patients requiring oral anticoagulants, DOACs may be more beneficial than VKA for preventing stroke occurrences after EVT.

8.
Mol Biol Rep ; 50(7): 6005-6017, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37273064

ABSTRACT

BACKGROUND: Family with sequence similarity 134, member B (FAM134B), also known as Reticulophagy regulator 1 (RETREG1), is an ER-phagy receptor involved in ER homeostasis. Congenital mutations in the FAM134B gene have been reported to be associated with hereditary sensory and autonomic neuropathy type 2B (HSAN2B); however, the molecular differences between wild-type and HSAN2B-linked FAM134B are not fully understood. METHODS AND RESULTS: We prepared several human FAM134B constructs, such as the HSAN2B-linked mutant, and compared their features with those of wild-type FAM134B by transfecting these constructs into FAM134B-deficient Neuro2a cells. Although intrinsic FAM134B protein expression in wild-type Neuro2a cells was affected by the supply of amino acids in the culture medium, the expression of each HSAN2B-linked mutant FAM134B protein was hardly affected by serum and amino acid deprivation. On the other hand, the intracellular localization of GFP-tagged HSAN2B-linked mutants, except for P7Gfs133X, overlapped well with ER-localized SP-RFPKDEL and did not differ from that of GFP-tagged wild-type FAM134B. However, analysis of protein‒protein interactions using the NanoBiT reporter assay revealed the difference between wild-type and C-terminal truncated mutant FAM134B. Furthermore, this NanoBiT assay demonstrated that both wild-type and G216R FAM134B interacted with LC3/GABARAPL1 to the same extent, but the FAM134B construct with mutations near the LC3-interacting region (LIR) did not. Similar to the NanoBiT assay, the C-terminal-truncated FAM134B showed lower ER-phagy activities, as assessed by the cotransfection of GFP-tagged reporters. CONCLUSIONS: We showed that wild-type and HSAN2B-linked FAM134B have different molecular characteristics by transfecting cells with various types of constructs. Thus, this study provides new insights into the molecular mechanisms underlying HSAN2B as well as the regulation of ER-phagy.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies , Intracellular Signaling Peptides and Proteins , Humans , Autophagy/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism
9.
Mol Biol Rep ; 50(7): 5917-5930, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37248430

ABSTRACT

BACKGROUND: Melanosomes are lysosome-related organelles that contain melanogenic factors and synthesize melanin as they mature. FYVE finger-containing phosphoinositide kinase (PIKfyve) regulates late endosome and lysosome morphology, vesicle trafficking, and autophagy. In melanocytes, PIKfyve inhibition has been reported to induce hypopigmentation due to impairments in the metabolism of early-stage melanosomes. METHODS AND RESULTS: Here, we report a new type of melanosome metabolism: post-PIKfyve inhibition, which was found during the characterization of the endosome/lysosome fluoroprobe GIF-2250. In B16F10 mouse melanoma cells, GIF-2250 highlighted vesicles positive for lysosomal-associated membrane protein 1 (lysosome marker) and other endosome/lysosome markers (CD63 and Rab7/9). When cells were continuously treated with PIKfyve inhibitors, intracellular vacuoles formed, while GIF-2250 fluorescence signals diminished and were diffusely distributed in the vacuoles. After removal of the PIKfyve inhibitors, the GIF-2250 signal intensity was restored, and some GIF-2250-positive vesicles wrapped the melanosomes, which spun at high speed. In addition, intermittent PIKfyve inhibition caused melanin diffusion in the vacuoles and possible leakage into the cytoplasmic compartments, and melanosome degradation was detected by a transmission electron microscope. Melanosome degradation was accompanied by decreased levels of melanin synthesis enzymes and increased levels of the autophagosome maker LC3BII, which is also associated with early melanosomes. However, the protein levels of p62, which is degraded during autophagy, were increased, suggesting an impairment in autophagy flux during intermittent PIKfyve inhibition. Moreover, the autophagy inhibitor 3-methyladenine does not affect these protein levels, suggesting that the melanosome degradation by the intermittent inhibition of PIKfyve is not mediated by canonical autophagy. CONCLUSIONS: In conclusion, disturbance of PIKfyve activity induces melanosome degradation in a canonical autophagy-independent manner.


Subject(s)
Melanoma , Melanosomes , Animals , Mice , 1-Phosphatidylinositol 4-Kinase/metabolism , Melanins/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Melanosomes/metabolism
10.
ACS Chem Neurosci ; 14(10): 1826-1833, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37104649

ABSTRACT

Ferroptosis and oxytosis are iron- and oxidative stress-dependent cell death pathways strongly implicated in neurodegenerative diseases, cancers, and metabolic disorders. Therefore, specific inhibitors may have broad clinical applications. We previously reported that 3-[4-(dimethylamino)benzyl]-2-oxindole (GIF-0726-r) and derivatives protected the mouse hippocampal cell line HT22 against oxytosis/ferroptosis by suppressing reactive oxygen species (ROS) accumulation. In this study, we evaluated the biological activities of GIF-0726-r derivatives with modifications at the oxindole skeleton and other positions. The addition of a methyl, nitro, or bromo group to C-5 of the oxindole skeleton enhanced antiferroptotic efficacy on HT22 cells during membrane cystine-glutamate antiporter inhibition and ensued intracellular glutathione depletion. In contrast, the substitution of the dimethylamino group on the side chain phenyl ring with a methyl, nitro, or amine group dramatically suppressed antiferroptotic activity regardless of other modifications. Compounds with antiferroptotic activity also directly scavenged ROS and decreased free ferrous ions in both HT22 cells and cell-free reactions while those compounds without antiferroptotic activity had little effect on either ROS or ferrous-ion concentration. Unlike oxindole compounds, which we have previously reported, the antiferroptotic compounds had little effect on the nuclear factor erythroid-2-related factor 2-antioxidant response element pathway. Oxindole GIF-0726-r derivatives with a 4-(dimethylamino)benzyl moiety at C-3 and some types of bulky group at C-5 (whether electron-donating or electron-withdrawing) can suppress ferroptosis, warranting safety and efficacy evaluations in animal models of disease.


Subject(s)
Iron , Neuroprotective Agents , Mice , Animals , Reactive Oxygen Species/metabolism , Iron/pharmacology , Oxindoles/pharmacology , Neuroprotective Agents/pharmacology , Cell Death
11.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982858

ABSTRACT

OSW-1, a steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, is a promising compound for an anticancer drug; however, its cytotoxic mechanisms have not been fully elucidated. Therefore, we analyzed the stress responses triggered by OSW-1 in the mouse neuroblastoma cell line Neuro2a by comparing it with brefeldin A (BFA), a Golgi apparatus-disrupting reagent. Among the Golgi stress sensors TFE3/TFEB and CREB3, OSW-1 induced dephosphorylation of TFE3/TFEB but not cleavage of CREB3, and induction of the ER stress-inducible genes GADD153 and GADD34 was slight. On the other hand, the induction of LC3-II, an autophagy marker, was more pronounced than the BFA stimulation. To elucidate OSW-1-induced gene expression, we performed a comprehensive gene analysis using a microarray method and observed changes in numerous genes involved in lipid metabolism, such as cholesterol, and in the regulation of the ER-Golgi apparatus. Abnormalities in ER-Golgi transport were also evident in the examination of secretory activity using NanoLuc-tag genes. Finally, we established Neuro2a cells lacking oxysterol-binding protein (OSBP), which were severely reduced by OSW-1, but found OSBP deficiency had little effect on OSW-1-induced cell death and the LC3-II/LC3-I ratio in Neuro2a cells. Future work to elucidate the relationship between OSW-1-induced atypical Golgi stress responses and autophagy induction may lead to the development of new anticancer agents.


Subject(s)
Antineoplastic Agents , Saponins , Mice , Animals , Saponins/pharmacology , Cell Line , Cholestenones/pharmacology , Antineoplastic Agents/pharmacology , Golgi Apparatus/metabolism , Brefeldin A/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
12.
Food Chem Toxicol ; 172: 113586, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584933

ABSTRACT

Oxidative stress is the central pathomechanism in multiple cell death pathways, including ferroptosis, a form of iron-dependent programmed cell death. Various phytochemicals, which include the inducers of the nuclear factor erythroid-2-related factor 2-antioxidant response element (Nrf2-ARE) transcription pathway, prevent ferroptosis. We recently reported that several compounds, such as the potent Nrf2-ARE inducer curcumin, protect mouse hippocampus-derived HT22 cells against ferroptosis independently of Nrf2-ARE activity. The present study characterized the anti-ferroptotic mechanisms of two additional Nrf2-ARE inducers, quercetin and resveratrol. Both compounds prevented erastin- and RSL3-induced ferroptosis of wild-type HT22 cells, and also blocked the exacerbated erastin- and RSL3-induced ferroptosis of Nrf2-knockdown HT22 cells. In both HT22 cells, quercetin and resveratrol blocked erastin- and RSL3-induced elevation in reactive oxygen species. These results suggest that the Nrf2-ARE pathway does protect against ferroptosis, but quercetin and resveratrol act by reducing oxidative stress independently of Nrf2-ARE induction. Quercetin and resveratrol also reduced Fe2+ concentrations in HT22 cells and in cell-free reactions. Thus, quercetin and resveratrol likely protect against erastin- and RSL3-induced ferroptosis by inhibiting the iron-catalyzed generation of hydroxyl radicals. Unlike quercetin, resveratrol cannot form a chelate structure with Fe2+ but the density functional theory computation demonstrates that resveratrol can form stable monodentate complexes with the alkene moiety and the electron-rich A ring.


Subject(s)
Ferroptosis , Mice , Animals , Resveratrol/pharmacology , Quercetin/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidant Response Elements , Iron/metabolism , Reactive Oxygen Species/metabolism , Hippocampus/metabolism
13.
Neuroradiology ; 65(4): 845-853, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36456893

ABSTRACT

PURPOSE: We aimed to evaluate whether the heterogeneity of tuber imaging features, evaluated on the structural imaging and apparent diffusion coefficient (ADC) map, can facilitate detecting epileptogenic tubers before surgery in tuberous sclerosis complex (TSC) patients. METHODS: Twenty-three consecutive patients, who underwent tuber resection at our institute, were retrospectively selected. A total of 125 tubers (39 epileptogenic, 86 non-epileptogenic) were used for the analysis. Tuber heterogeneity was evaluated, using a 5-point visual scale and standard deviation of ADC values (ADCsd). A 5-point visual scale reflected the degree of T1/T2 prolongation, presence of internal cystic degeneration, and their spatial distribution within the tuber. These results were statistically compared between epileptogenic and non-epileptogenic groups, and their performance in predicting the epileptogenicity was also evaluated by receiver operating characteristic (ROC) analysis. RESULTS: A 5-point visual scale demonstrated that more heterogeneous tubers were significantly more epileptogenic (p < 0.001). Multiplicity of internal cystic degeneration moderately correlated with epileptogenicity (p < 0.03) based on the comparison between class 4 and class 5 tubers. ADCsd was significantly higher in epileptogenic tubers (p < 0.001). ROC curves revealed that a 5-point visual scale demonstrated higher area under the curve (AUC) value than ADCsd (0.75 and 0.72, respectively). CONCLUSION: Tuber heterogeneity may help identify the epileptogenic tubers in presurgical TSC patients. Visual assessment and standard deviation of ADC value, which are easier to implement in clinical use, may be a useful tool predicting epileptogenic tubers, improving presurgical clinical management for TSC patients with intractable epilepsy.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Tuberous Sclerosis , Humans , Epilepsy/diagnostic imaging , Epilepsy/etiology , Retrospective Studies , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Electroencephalography
14.
ACS Chem Neurosci ; 13(18): 2719-2727, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36050287

ABSTRACT

Haloperidol is a widely used antipsychotic agent that exerts antipsychotic effects through a strong antagonism of dopamine D2 receptors. In addition, haloperidol is classified as a sigma-1 receptor (S1R) antagonist that prevents endogenous oxidative stress in cultured cells. However, pharmacological activities of haloperidol against oxidative stress remain unclear. Oxytosis/ferroptosis are iron-dependent nonapoptotic oxidative cell deaths that are regarded as two names for the same cell death pathway and the potential physiological relevance of oxytosis/ferroptosis in multiple diseases is suggested. In the present study, the effects of haloperidol on oxytosis/ferroptosis were investigated in S1R-knockdown mouse hippocampal HT22 cells. The results indicate that haloperidol is a strong inhibitor of oxytosis/ferroptosis independent of S1R. Imaging of HT22 cells with a newly developed fluorescent probe showed that haloperidol was localized to late endosomes and lysosomes and reduced the accumulation of lysosomal ferrous ions, resulting in reduced production of intracellular reactive oxygen species and inhibition of cell death. These results indicate that haloperidol is useful not only as an antipsychotic agent but also as a neuroprotective agent against endogenous oxidative stress via distinct mechanisms. Furthermore, lysosome-targeting ferroptosis inhibitors could be useful for the treatment of various diseases, including cancers, ischemia-reperfusion injury, and neurodegenerative disorders, which have been associated with ferroptosis.


Subject(s)
Antipsychotic Agents , Ferroptosis , Neuroprotective Agents , Animals , Antipsychotic Agents/pharmacology , Dopamine , Fluorescent Dyes , Haloperidol/pharmacology , Ions , Iron/metabolism , Lysosomes/metabolism , Mice , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Dopamine D2 , Receptors, sigma , Sigma-1 Receptor
15.
Mol Biol Rep ; 49(11): 10541-10556, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152228

ABSTRACT

BACKGROUNDS: The endoplasmic reticulum (ER) is a crucial organelle that regulates both the folding, modification and transport of many proteins and senses certain stimuli inside and outside of cells. ER-associated degradation (ERAD), including SEL1L is a crucial mechanism to maintain homeostasis. In this study, we performed comparative proteome analysis in wild-type (wt) and SEL1L-deficient cells. METHODS AND RESULTS: We found constitutively high expression of thioredoxin domain-containing protein 11 (TXNDC11) mRNA and protein in our SEL1L-deficient HEK293 cells by RT-PCR and Western blot analysis. The TXNDC11 gene possesses a well-conserved unfolded protein response element (UPRE) around its transcription start site, and ER stress increased TXNDC11 mRNA and luciferase reporter activity via this putative UPRE in HEK293 cells. The amounts of TXNDC11 protein in wild-type and SEL1L-deficient cells with or without thapsigargin (Tg) treatment were parallel to their mRNAs in these cells, which was almost proportional to spliced XBP1 (sXBP1) mRNA expression. The establishment and characterization of TXNDC11-deficient HEK293 cells revealed that the expression of three different ER resident stress sensors, ATF6α, CREB3 and CREB3L2, is regulated by TXNDC11. The rate of disappearance of the three proteins by CHX treatment in wt cells was remarkably different, and the full-length CREB3L2 protein was almost completely degraded within 15 min after CHX treatment. TXNDC11 deficiency increased the expression of each full-length form under resting conditions and delayed their disappearance by CHX treatment. Interestingly, the degree of increase in full-length CREB3/CREB3L2 by TXNDC11 deficiency was apparently higher than that in full-length ATF6α. The increase in these proteins by TXNDC11 deficiency was hardly correlated with the expression of each mRNA. Treatment with ER stress inducers influenced each full-length mature form, and the difference in each full-length form observed in wt and TXNDC11-deficient cells was smaller. CONCLUSION: This study demonstrated that TXNDC11 is an ER stress-inducible gene regulated by the IRE1-sXBP1 pathway. In addition, TXNDC11 is involved in the regulation of ATF6α, CREB3 and CREB3L2 protein expression, although the contribution to the stability of these proteins is quite variable. Therefore, its further characterization will provide new insights for understanding protein homeostasis in ER physiology and pathology.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Humans , Cyclic AMP Response Element-Binding Protein/genetics , Endoplasmic Reticulum Stress/genetics , HEK293 Cells , Proteins/genetics , RNA, Messenger/genetics , Thioredoxins/genetics
16.
Mol Genet Metab ; 137(1-2): 68-80, 2022.
Article in English | MEDLINE | ID: mdl-35932552

ABSTRACT

Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.


Subject(s)
Peroxisomal Disorders , Zellweger Syndrome , Humans , Mosaicism , HEK293 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxisomes/genetics , Peroxisomes/metabolism , Zellweger Syndrome/genetics , Zellweger Syndrome/metabolism , Mutation , Fibroblasts/metabolism , Peroxisomal Disorders/genetics , Peroxisomal Disorders/metabolism , Peroxins/genetics , Lipoproteins/genetics
17.
Eur J Pharmacol ; 928: 175119, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35753403

ABSTRACT

Oxidative stress is common to multiple cell death pathways, including apoptosis. We recently identified several compounds that protect against ferroptosis, another cell death pathway associated with oxidative stress, suggesting potential efficacy against apoptosis. The present study assessed the protective efficacies of the ferroptosis inhibitors oxindole-curcumin hybrid compound GIF-2165X-G1, N,N-dimethylaniline derivatives GIF-2014 and GIF-2115, and ferrostatin-1 against rotenone-induced apoptosis. Treatment of mouse hippocampal HT22 cells with the mitochondrial transport chain inhibitor rotenone for 24 h reduced mitochondrial membrane potential, increased reactive oxygen species production, promoted nuclear fragmentation, and ultimately impaired cell viability, consistent with apoptosis. Ferroptosis inhibitor cotreatment did not prevent any of these rotenone-induced apoptotic processes but did suppress delayed cell death associated with loss of plasma membrane integrity. These results suggest that GIF-2165X-G1, GIF-2014, GIF-2115, and ferrostatin-1 are selective for ferroptosis and do not affect apoptosis. Thus, erastin-induced ferroptosis and rotenone-induced apoptosis are distinct cell death pathways despite the common involvement of mitochondrial oxidative stress. Further, the cytoprotective efficacies of chemical antioxidants may depend on the specific source of oxidative stress.


Subject(s)
Curcumin , Ferroptosis , Aniline Compounds , Animals , Apoptosis , Curcumin/metabolism , Curcumin/pharmacology , Mice , Neurons , Oxidative Stress , Oxindoles/metabolism , Oxindoles/pharmacology , Reactive Oxygen Species/metabolism , Rotenone/toxicity
18.
Nutrients ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35565744

ABSTRACT

Trehalose solution ingested during exercise induces gradual increases in blood glucose levels and the insulin response compared with glucose solution. Trehalose solution aids in the maintenance of performance in the later stages of prolonged exercise. The purpose of this study was to identify the lowest concentration at which the properties of trehalose could be exploited. Groups of 12 healthy men (21.3 ± 1.3 years) and 10 healthy men (21.1 ± 0.7 years) with recreational training were included in experiments 1 and 2, respectively. Both experiments followed the same protocol. After fasting for 12 h, the participants performed a 60 min constant-load exercise at 40% V˙O2 peak using a bicycle ergometer and ingested 500 mL of a trial drink (experiment 1: water, 8% glucose, and 6 or 8% trehalose; experiment 2: 4 or 6% trehalose). They performed four sets of the Wingate test combined with a 30 min constant-load exercise at 40% V˙O2 peak. The experiment was conducted using a randomized cross-over design; trial drink experiments were conducted over intervals of 7 to 12 days. The exercise performance was evaluated based on mean power in the Wingate test. Blood was collected from the fingertip at 12 points during each experiment to measure blood glucose levels. During the high-intensity 5 h intermittent exercise, no differences were found between the groups in exercise performance in the later stages with concentrations of 8, 6, and 4% trehalose solution. The results suggest that trehalose could be useful for making a new type of mixed carbohydrate solution. Further studies to determine the trehalose response of individual athletes during endurance exercise are needed.


Subject(s)
High-Intensity Interval Training , Trehalose , Blood Glucose , Glucose/pharmacology , Humans , Insulin , Male , Physical Endurance , Trehalose/pharmacology
19.
Sports (Basel) ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35447861

ABSTRACT

Mouth rinsing with a carbohydrate (CHO) solution has emerged as a sports nutrition strategy to increase endurance performance. This study aimed to clarify the effects of two forms of CHO sensing in the mouth (i.e., CHO mouth rinse (CMR) and CHO mouth spray (CMS)) on exercise performance during prolonged exercise, including ultra-high intensity intermittent exercise over time. We conducted the following experimental trials: (1) 6% glucose solution (G), (2) 6% CMR, (3) 6% CMS, and (4) water (WAT). These trials were conducted at least 1 week apart in a randomized crossover design. Eight male college students performed constant-load exercise for 60 min (intensity 40% VO2peak), four sets of the Wingate test (three 30 s Wingate tests with a 4 min recovery between each test), and a constant-load exercise for 30 min (intensity 40% VO2peak). The mean exercise power output (Watt), ratings of perceived exertion, and blood glucose levels were measured. We found that the mean power values of the CMR and CMS in the third and fourth sets was significantly higher than that of WAT (p < 0.05), and that the G trial did not show a significant difference from any other trial. Thus, when compared to G or WAT, CMR and CMS can help improve endurance exercise performance.

20.
ACS Chem Neurosci ; 13(7): 1055-1064, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35294164

ABSTRACT

Endoplasmic reticulum (ER) stress and oxidative stress lead to protein misfolding, and the resulting accumulation of protein aggregates is often associated with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and prion disease. Small molecules preventing these pathogenic processes may be effective interventions for such neurodegenerative disorders. In this paper, we identify several novel oxindole compounds that can prevent ER stress- and oxidative stress-induced cell death. Among them, derivatives of the lead compound GIF-0726-r in which a hydrogen atom at the oxindole ring 5 position is substituted with a methyl (GIF-0852-r), bromine (GIF-0854-r), or nitro (GIF-0856-r) group potently suppressed global ER stress. Furthermore, GIF-0854-r and -0856-r prevented protein aggregate accumulation in vitro and in cultured hippocampal HT22 neuronal cells, indicating that these two compounds function effectively as chemical chaperones. In addition, GIF-0852-r, -0854-r, and -0856-r prevented glutamate-induced oxytosis and erastin-induced ferroptosis. Collectively, these results suggest that the novel oxindole compounds GIF-0854-r and -0856-r may be useful therapeutics against protein-misfolding diseases as well as valuable research tools for studying the molecular mechanisms of ER and oxidative stress.


Subject(s)
Endoplasmic Reticulum Stress , Hippocampus , Cell Death , Hippocampus/metabolism , Oxindoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...