Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Sci Rep ; 13(1): 11394, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452198

ABSTRACT

Non-polar m-plane GaN terahertz quantum cascade laser (THz-QCL) structures have been studied. One is traditional three-well resonant-phonon (RP) design scheme. The other is two-well phonon scattering injection (PSI) design scheme. The peak gains of 41.8 and 44.2 cm-1 have been obtained at 8.2 and 7.7 THz respectively at 300 K according to the self-consistent non-equilibrium Green's function calculation. Different from the usual GaAs two-well design, the upper and lower lasing levels are both ground states in the GaN quantum wells for the PSI scheme, mitigating the severe broadening effect for the excited states in GaN. To guide the fabrication of such devices, the doping effect on the peak gain has been analyzed. The two designs have demonstrated distinct doping density dependence and it is mainly attributed to the very different doping dependent broadening behaviors. The results reveal the possibility of GaN based THz-QCL lasing at room temperature.


Subject(s)
Lasers, Semiconductor , Phonons , Injections , Water Wells
2.
Sci Rep ; 13(1): 3308, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849503

ABSTRACT

AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) are expected to have various applications, including sensing and printing, and light with ultraviolet-C (UVC) wavelengths has a virus inactivation effect. The metalorganic vapor phase epitaxy (MOVPE) method has been used to fabricate LED devices with film control and impurity doping. However, to achieve high luminous efficiency, highly crystalline aluminum nitride (AlN) must be grown in the underlying layer. Although high temperatures are required to grow high-quality AlN for strong migration at the surface, there is a trade-off in the high temperature promoting parasitic reactions. These parasitic reactions are more dominant at a high V/III ratio with more raw material in the case of using the conventional MOVPE. Here, we used jet stream gas flow MOVPE to investigate the effect of V/III ratio dependencies in optimizing AlN growth and without affecting parasitic reaction conditions. As a result, trends of typical AlN crystal growth at V/III-ratio dependencies were obtained. AlN is more stable at a higher V/III ratio of 1000, exhibiting a double atomic step surface, and the crystal orientation is further improved at 1700 °C compared to that at a lower V/III ratio.

3.
Sci Rep ; 13(1): 2438, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765074

ABSTRACT

Deep ultraviolet light-emitting diodes have attracted considerable attention for realizing virus inactivation applications. The UV-LEDs use the AlN underlying layer and the plane sapphire substrate. However, the low growth temperature in AlN underlying layer is grown by limited growth temperature in conventional MOVPE, and high temperature is preferable for AlN growth. Furthermore, the AlN underlying layer has many dislocations owing to the active layer in the device region when the flat sapphire substrate was used with a dislocation value of > 109 cm-2. We showed the high-temperature crystal growth of AlN with a temperature of 1700 °C by high temperature and gas flow velocity MOVPE. The achieved dislocation density was ~ 4 × 108 cm-2. Additionally, this data means the low dislocation densities in the AlN layer with a growth time of only 15 min and a dislocation density of < 1 × 109 cm-2 are obtained. The AlN growth temperature exceeding 1550 °C decreases the growth rate. These results indicate desorption from the surface of the substrate in a hydrogen atmosphere. Furthermore, the characteristic dislocation behavior of AlN in high-temperature growth at 1700 °C was elucidated from TEM images.

4.
Sci Rep ; 12(1): 22228, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564403

ABSTRACT

The recent designs of terahertz quantum cascade lasers usually employ the short periodic length and also the tall barriers for high-temperature operation. In this work, the effect of high-energy lying non-relevant subbands is studied based on nonequilibrium Green's function formalisms model, demonstrating those subbands are probable to play a minor role on the population inversion, but play a major role on the optical gain at high temperatures. The phenomenon can be ascribed to the appearance of leakages crossing neighboring periods via sequential resonant tunneling, and those leakages are inherently created by the specific features of the two-well configuration in this design that the phonon well should be wide enough for performing the phonon scattering to depopulate the lower-laser subband. The narrower periodic length design can strengthen this inter-period leakage. A parasitic absorption between the first high-lying nonrelevant subbands from two laser wells can closely overlap the gain shape and thus significantly reduce the peak gain.

5.
Sci Rep ; 12(1): 17378, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253405

ABSTRACT

Recent renewed operating temperatures in terahertz quantum cascade lasers emphasize on narrowing the periodic length in a 2-well resonant-phonon design for a clean quantum level structure, in which the depopulation energy is significantly higher than one longitudinal phonon. In this study, various depopulation energies (small and large) are engineered in a 2-well design; the effect of the high-lying nonrelevant levels on the currents are systematically studied by using the non-equilibrium Green's function method. The engineering of the depopulation energy is unable to avoid the formation of leakage channels, which are activated within at least three neighboring periods via sequential close tunneling. However, a large depopulation energy relaxes the thermal backfilling process; as a result, the net leakages at high temperatures can be significantly suppressed. In addition, pre-alignment remains a critical issue in the design when using a large depopulation energy, which requires improved engineering for the barriers to obtain better laser dynamics.

6.
Sci Rep ; 12(1): 7662, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538125

ABSTRACT

AlGaN-based deep ultraviolet light-emitting diodes (LEDs) have a wide range of applications such as medical diagnostics, gas sensing, and water sterilization. Metal-organic vapor phase epitaxy (MOVPE) method is used for the growth of all-in-one structures, including doped layer and thin multilayers, using metal-organic and gas source raw materials for semiconductor devices. For AlN growth with high crystalline quality, high temperature is necessary to promote the surface migration of Al atoms and Al-free radicals. However, increase in temperature generates parasitic gas-phase prereactions such as adduct formation. In this work, AlN growth at 1500 °C by a stable vapor phase reaction has been achieved by jet stream gas flow metal-organic vapor phase epitaxy. The AlN growth rate increases with gas flow velocity and saturates at ~ 10 m/s at room temperature. Moreover, it is constant at an ammonia flow rate at a V/III ratio from 50 to 220. These results demonstrate the reduction in adduct formation, which is a typical issue with the vapor phase reaction between triethylaluminum and ammonia. The developed method provides the in-plane uniformity of AlN thickness within 5%, a low concentration of unintentionally doped impurities, smooth surface, and decrease in dislocation density because of the suppression of parasitic reactions.

7.
Sci Rep ; 12(1): 2591, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35173171

ABSTRACT

Crystal growth of eco-friendly, ultrawide bandgap aluminium gallium nitride (AlGaN) semiconductor-based ultraviolet-B (UVB) light-emitting diodes (LEDs) hold the potential to replace toxic mercury-based ultraviolet lamps. One of the major drawbacks in the utilisation of AlGaN-based UVB LEDs is their low efficiency of about 6.5%. The study investigates the influence of Al-graded p-type multi-quantum-barrier electron-blocking-layer (Al-grad p-MQB EBL) and Al-graded p-AlGaN hole source layer (HSL) on the generation and injection of 3D holes in the active region. Using the new UVB LED design, a significant improvement in the experimental efficiency and light output power of about 8.2% and 36 mW is noticed. This is accomplished by the transparent nature of Al-graded Mg-doped p-AlGaN HSL for 3D holes generation and p-MQB EBL structure for holes transport toward multi-quantum-wells via intra-band tunnelling. Based on both the numerical and experimental studies, the influence of sub-nanometre scale Ni film deposited underneath the 200 nm-thick Al-film p-electrode on the optical reflectance in UVB LED is investigated. A remarkable improvement in the efficiency of up to 9.6% and light output power of 40 mW, even in the absence of standard package, flip-chip, and resin-like lenses, is achieved on bare-wafer under continuous-wave operation at room temperature. The enhanced performance is attributed to the use of Al-graded p-MQB EBL coupled with softly polarised p-AlGaN HSL and the highly reflective 0.4 nm-thick Ni and 200 nm-thick Al p-electrode in the UVB LED. This research study provides a new avenue to improve the performance of high-power p-AlGaN-based UVB LEDs and other optoelectronic devices in III-V semiconductors.

8.
Sci Rep ; 11(1): 23634, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34880270

ABSTRACT

The key challenge for terahertz quantum cascade lasers (THz-QCLs) is to make it operating at room-temperature. The suppression of thermally activated leakages via high lying quantum levels is emphasized recently. In this study, we employ the advanced self-consistent method of non-equilibrium Green's function, aiming to reveal those kinds of leakages in the commonly used THz-QCL designs based on 2-, 3- and 4-quantum well. At the high temperature of 300 K, if all the confined high lying quantum levels and also the continuums are included within three neighboring periods, leakages indeed possess high fraction of the total current (21%, 30%, 50% for 2-, 3- and 4-quantum well designs, respectively). Ministep concept is introduced to weaken those leakage channels by isolating the desired levels from high lying ones, thus the leakages are well suppressed, with corresponding fractions less than 5% for all three designs.

10.
Nanotechnology ; 32(21): 215703, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33657018

ABSTRACT

The optoelectronic properties of semiconducting aluminum gallium nitride (AlGaN)-based ultraviolet-B (UVB) light-emitting diodes (LEDs) are crucial for real-world medical applications such as cancer therapy and immunotherapy. However, the performance of AlGaN-based UVB LED devices is still poor due to the low hole injection efficiency. Therefore, we have numerically investigated the performance of AlGaN-based UVB LEDs for the suppression of efficiency droop as well as for the enhancement of hole injection in the multiquantum wells (MQWs). The influence of the undoped (ud)-AlGaN final quantum barrier (FQB), as well as the Mg-doped multiquantum barrier electron blocking layer (p-MQB EBL), on the efficiency droop has been focused on specifically. To evaluate the performance of the proposed device, we have compared its internal quantum efficiency (IQE), carrier concentration, energy band diagram, and radiative recombination rate with the conventional device structure. Furthermore, the influence of Al composition in the Al-graded p-AlGaN hole source layer (HSL) on the operating voltages of the proposed UVB LEDs was considered. The simulation results suggest that our proposed structure has a high peak efficiency and much lower efficiency droop as compared to the reference structure (conventional). Ultimately, the radiative recombination rate in the MQWs of the proposed UVB LED-N structure has increased up to ∼73%, which is attributed to the enhanced level of electron and hole concentrations by ∼64% and 13%, respectively, in the active region. Finally, a high efficiency droop of up to ∼42% in RLED has been successfully suppressed, to ∼7%, by using the optimized ud-AlGaN FQB and the p-MQB EBL, as well as introducing Al-graded p-AlGaN HSL in the proposed UVB LED-N structure.

11.
Nanotechnology ; 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33567413

ABSTRACT

Optoelectronic properties of semiconducting aluminum gallium nitride (AlGaN) - based ultraviolet - B (UVB) light-emitting diodes (LEDs) are crucial for the real-world medical applications such as cancer and immunotherapy. Therefore, we have numerically investigated the performances of AlGaN-based UVB LEDs for the suppression of efficiency droop as well as for the enhancement of hole injection in the multiquantum wells (MQWs). The influence of the undoped (ud)-AlGaN final barrier (FB) as well as Mg-doped multiquantum barrier electron blocking layer (p-MQB EBL) on the efficiency droop has been specifically focused. For the evaluation of the proposed device performance, we have compared its internal quantum efficiency (IQE), carrier concentration, energy band diagram, and radiative recombination rate with the conventional device structure. Furthermore, the influence of Al-composition in the p-AlGaN hole source layer (HSL) on the operating voltages of the proposed UVB LEDs was considered. The simulation results suggest that our proposed structure has high peak efficiency and much lower efficiency droop as compared to the reference structure (conventional). Ultimately, the radiative recombination rate in the MQWs of the proposed structure has been found to raise up to ~73%, which is attributed to the enhanced level of electron and hole concentrations by ~64% and 13% , respectively, in the active region. Finally, a high efficiency droop up to ~42% in RLED has been found successfully suppressed to ~7% by using optimized ud-AlGaN FB and p-MQB EBL in the proposed UVB device structure.

12.
Nanotechnology ; 32(5): 055702, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33007768

ABSTRACT

Mg-doped p-type semiconducting aluminium-gallium-nitride hole source layer (p-AlGaN HSL) materials are quite promising as a source of hole 'p' carriers for the ultraviolet-B (UVB) light-emitting diodes (LEDs) and laser diodes (LDs). However, the p-AlGaN HSL has a central issue of low hole injection due to poor activation of Mg atoms, and the presence of unwanted impurity contamination and the existence of a localized coherent state. Therefore, first the impact of the Mg level on the crystallinity, Al composition and relaxation conditions in the p-AlGaN HSL were studied. An increasing trend in the lattice-relaxation ratios with increasing Mg concentrations in the p-AlGaN HSL were observed. Ultimately, a 40%-60% relaxed and 1.4 µm thick p-AlGaN HSL structure with total threading dislocation densities (total-TDDs) of approximately ∼8-9 × 108 cm-2 was achieved, which almost matches our previous design of a 4 µm thick and 50% relaxed n-AlGaN electron source layer (ESL) with total-TDDs of approximately ∼7-8 × 108 cm-2. Subsequently, structurally a symmetric p-n junction for UVB emitters was accomplished. Finally, the influence of excimer laser annealing (ELA) on the activation of Mg concentration and on suppression of unwanted impurities as well as on the annihilation of the localized energy state in the p-AlGaN HSL were thoroughly investigated. ELA treatment suggested a reduced Ga-N bonding ratio and increased Ga-O, as well as Ga-Ga bonding ratios in the p-AlGaN HSL. After ELA treatment the localized coherent state was suppressed and, ultimately, the photoluminescence emission efficiency as well as conductivity were drastically improved in the p-AlGaN HSL. By using lightly polarized p-AlGaN HSL assisted by ELA treatment, quite low resistivity in p-type AlGaN HSL at room temperature (hole concentration is ∼2.6 × 1016 cm-3, the hole mobility is ∼9.6 cm2 V1 s-1 and the resistivity is ∼24.39 Ω. cm) were reported. ELA treatment has great potential for localized activation of p-AlGaN HSL as well as n- and p-electrodes on n-AlGaN and p-AlGaN contact layers during the flip-chip (FC) process in low operating UVB emitters, including UVB lasers.

13.
Opt Lett ; 45(9): 2563, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356817

ABSTRACT

This publisher's note contains corrections to Opt. Lett.45, 495 (2020)OPLEDP0146-959210.1364/OL.376894.

14.
Sci Rep ; 9(1): 9446, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31263207

ABSTRACT

Operating at high temperatures in the range of thermoelectric coolers is essential for terahertz quantum cascade lasers to real applications. The use of scattering-assisted injection scheme enables an increase in operating temperature. This concept, however, has not been implemented in a short-period structure consisting of two quantum wells. In this work, based on non-equilibrium Green's function calculations, it emphasizes on the current leakage and parasitic absorption via high-energy states as fundamental limitations in this scheme with short-period. A new design concept employing asymmetric wells composition is proposed to suppress these limitations. A peak gain of 40 cm-1 at 230 K is predicted in the GaAs/AlGaAs semiconductor material system with an emission frequency of 3.5 THz.

15.
Sci Rep ; 7(1): 12176, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939802

ABSTRACT

Growing III-V semiconductor materials on Si substrates for opto-electronic applications is challenging because their high lattice mismatch and different thermal expansion coefficients cause the epitaxial layers to have low quality. Here we report the growth of a high-quality AlN template on a micro-circle-patterned Si substrate by using NH3 pulsed-flow multilayer AlN growth and epitaxial lateral overgrowth techniques. Then, we fabricated and characterized a deep-ultraviolet light-emitting diode (UV-LED) device using this AlN/patterned Si. By using standard lithography and inductively coupled plasma etching, the Si substrate was prepared with very high pattern density and was made deep enough to grow a thick AlN template with high crystal quality and very few threading dislocations, allowing for further re-growth of the deep UV-LED device. And by combining a transparent p-AlGaN contact layer, an electron blocking layer and using this high quality AlN template: a deep UV-LED device fabricated and showed a strong single sharp electroluminescence (EL) peak at 325 nm and achieved an external quantum efficiency (EQE) of about 0.03%, for a deep UV-LED grown on Si substrate.

16.
Sci Rep ; 6: 35681, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819331

ABSTRACT

An AlN template layer is required for growth of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs). However, the crystal quality of AlN templates grown on both flat and patterned Si substrates has so far been insufficient for replacing templates grown on sapphire substrates. In this work, we grew a high-quality AlN template on 2 in. micro-circle-patterned Si substrate (mPSiS) with two different sizes and shapes through controlling the bias power of inductively coupled plasma (ICP) etching. The experimental results showed that the best AlN template was obtained on a large pattern size with a bow-angle shape and the template had X-ray rocking curves with full widths at half-maximum of 620 and 1141 arcsec for the (002) and (102) reflection planes. The threading dislocation density near surface of AlN template through transmission electron microscopy (TEM) estimation was in the order of 107 cm-2, which is the lowest dislocation density reported for a Si substrate to our knowledge. A strong single electroluminescence (EL) peak was also obtained for an AlGaN-based deep UV-LED grown on this template, means that it can be used for further developing high-efficiency deep UV-LEDs.

17.
Sci Rep ; 5: 14734, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26439169

ABSTRACT

High-density micro-circle patterned Si substrates were successfully fabricated for the direct overgrowth of thick AlN templates by using NH3 pulsed-flow multilayer AlN growth and epitaxial lateral overgrowth techniques. The experimental results show that an 8-µm-thick AlN template was grown at a very high growth rate on the substrates. The AlN template had full widths at half maximum of 0.23° and 0.37° for the (002) and (102) reflection planes in X-ray diffraction rocking curves. Atomic force microscopy and transmission electron microscopy confirmed that the roughness of the surface was low (3.5 nm) and the dislocation density was very low (1.5 × 10(8) cm(-2) (screw), 3.7 × 10(8) (edge) cm(-2)).

18.
Nat Mater ; 2(2): 117-21, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12612697

ABSTRACT

Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error <50 nm). Numerical calculations revealed that a transmission peak observed at the upper frequency edge of the bandgap originated from the excitation of a resonant guided mode in the defective layers. Despite their importance, detailed discussions on the defective modes of 3D photonic crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Semiconductors , Electromagnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL