Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 12(6): e0179377, 2017.
Article in English | MEDLINE | ID: mdl-28594961

ABSTRACT

Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that ß2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in ß2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.


Subject(s)
Hippocampus/metabolism , Nerve Net/metabolism , Receptors, Immunologic/metabolism , Animals , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Excitatory Postsynaptic Potentials/drug effects , Functional Laterality/drug effects , Gene Targeting , Hippocampus/drug effects , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Nerve Net/drug effects , Neuronal Plasticity/drug effects , Phenols/pharmacology , Piperidines/pharmacology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Receptors, Immunologic/deficiency , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , beta 2-Microglobulin
2.
Bioprocess Biosyst Eng ; 39(1): 81-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522660

ABSTRACT

Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.


Subject(s)
Models, Biological , Soil Microbiology , Soil , Solid Waste
3.
J Environ Sci (China) ; 26(6): 1284-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-25079837

ABSTRACT

We examined the degradation of dibromophenols (DBPs), i.e. 2,4-DBP, 2,6-DBP and 3,5-DBP by ultraviolet (UV) irradiation and estimated the relationship between degradability and molecular orbital properties of each dibromophenol. The removal of DBPs under a UV lamp system was successfully performed in an aqueous solution. After 5 min of irradiation, the initial DBPs concentration of 20 mg/L was decreased to below 1 mg/L, and about 60% of bromide ion was released. A decrease in the concentration of dissolved organic carbon (DOC) suggested the mineralization of DBPs. The mineralization may occur after release of bromide ions because the decrease of DOC was slower than the release of bromide ions. The degradability of 3,5-DBP was slightly lower than 2,6-DBP and 2,4-DBP. Molecular orbital calculation suggested that the electrophilic frontier density and the highest occupied molecular orbital (HOMO) energy may be related to the degradability of DBPs.


Subject(s)
Phenols/chemistry , Water Pollutants, Chemical/chemistry , Molecular Structure , Phenols/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects
4.
PLoS One ; 9(7): e102240, 2014.
Article in English | MEDLINE | ID: mdl-25048964

ABSTRACT

Many cost-benefit decisions reduce to simple choices between approach or avoidance (or active disregard) to salient stimuli. Physiologically, critical factors in such decisions are modulators of the homeostatic neural networks that bias decision processes from moment to moment. For the predatory sea-slug Pleurobranchaea, serotonin (5-HT) is an intrinsic modulatory promoter of general arousal and feeding. We correlated 5-HT actions on appetitive state with its effects on the approach-avoidance decision in Pleurobranchaea. 5-HT and its precursor 5-hydroxytryptophan (5-HTP) augmented general arousal state and reduced feeding thresholds in intact animals. Moreover, 5-HT switched the turn response to chemosensory stimulation from avoidance to orienting in many animals. In isolated CNSs, bath application of 5-HT both stimulated activity in the feeding motor network and switched the fictive turn response to unilateral sensory nerve stimulation from avoidance to orienting. Previously, it was shown that increasing excitation state of the feeding network reversibly switched the turn motor network response from avoidance to orienting, and that 5-HT levels vary inversely with nutritional state. A simple model posits a critical role for 5-HT in control of the turn network response by corollary output of the feeding network. In it, 5-HT acts as an intrinsic neuromodulatory factor coupled to nutritional status and regulates approach-avoidance via the excitation state of the feeding network. Thus, the neuromodulator is a key organizing element in behavioral choice of approach or avoidance through its actions in promoting appetitive state, in large part via the homeostatic feeding network.


Subject(s)
Pleurobranchaea/physiology , Serotonin/metabolism , Animals , Feeding Behavior , Nerve Net/physiology , Orientation
5.
J Environ Manage ; 114: 216-24, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23168253

ABSTRACT

This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario.


Subject(s)
Garbage , Recycling , Soil , Waste Management , Algorithms , Cambodia , Forecasting , Greenhouse Effect
6.
Front Neurosci ; 6: 123, 2012.
Article in English | MEDLINE | ID: mdl-22969700

ABSTRACT

A simple circuit for cost-benefit decision derived from behavioral and neural studies of the predatory sea-slug Pleurobranchaea may closely resemble that upon which the more complex valuation and decision processes of the social vertebrates are built. The neuronal natures of the pathways in the connectionist model comprise classic central pattern generators, bipolar switch mechanisms, and neuromodulatory state regulation. Marked potential exists for exploring more complex neuroeconomic behavior by appending appropriate circuitry in simulo.

7.
Environ Technol ; 33(13-15): 1685-94, 2012.
Article in English | MEDLINE | ID: mdl-22988629

ABSTRACT

This paper presents a mathematical model of vertical water movement and a performance evaluation of the model in static pile composting operated with neither air supply nor turning. The vertical moisture content (MC) model was developed with consideration of evaporation (internal and external evaporation), diffusion (liquid and vapour diffusion) and percolation, whereas additional water from substrate decomposition and irrigation was not taken into account. The evaporation term in the model was established on the basis of reference evaporation of the materials at known temperature, MC and relative humidity of the air. Diffusion of water vapour was estimated as functions of relative humidity and temperature, whereas diffusion of liquid water was empirically obtained from experiment by adopting Fick's law. Percolation was estimated by following Darcy's law. The model was applied to a column of composting wood chips with an initial MC of 60%. The simulation program was run for four weeks with calculation span of 1 s. The simulated results were in reasonably good agreement with the experimental results. Only a top layer (less than 20 cm) had a considerable MC reduction; the deeper layers were comparable to the initial MC, and the bottom layer was higher than the initial MC. This model is a useful tool to estimate the MC profile throughout the composting period, and could be incorporated into biodegradation kinetic simulation of composting.


Subject(s)
Biodegradation, Environmental , Medical Waste Disposal , Models, Theoretical , Soil , Water/chemistry , Air , Diffusion , Steam , Temperature
8.
Curr Biol ; 22(2): 118-23, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22197246

ABSTRACT

Concrete examples of computation and implementation of cost/benefit decisions at the level of neuronal circuits are largely lacking. Such decisions are based on appetitive state, which is the integration of sensation, internal state, and memory. Value-based decisions are accessible in neuronal circuitry of simple systems. In one such system, the predatory sea slug Pleurobranchaea, appetite is readily quantified in behavior and related to approach/avoidance decision. Moreover, motor aspects of feeding and turning can be observed as fictive motor output in the isolated central nervous system (CNS). Here we found that the excitation state of the feeding motor network both manifested appetitive state and controlled expression of orienting versus avoidance. In isolated CNSs, spontaneous feeding network activity varied proportionally to donor feeding thresholds. CNSs from low- and high-feeding-threshold donors expressed fictive orienting or avoidance, respectively, in response to brief stimulation of sensory nerves. Artificially exciting the feeding network converted fictive avoidance to orienting. Thus, the feeding network embodied appetitive state and toggled approach/avoidance decision by configuring response symmetry of the premotor turn network. A resulting model suggests a basic cost/benefit decision module from which to consider evolutionary elaboration of the circuitry to serve more intricate valuation processes in complex animals.


Subject(s)
Appetitive Behavior/physiology , Gastropoda/physiology , Nerve Net/physiology , Animals , Central Nervous System/physiology , Homeostasis , In Vitro Techniques
9.
Waste Manag Res ; 29(5): 491-500, 2011 May.
Article in English | MEDLINE | ID: mdl-20813763

ABSTRACT

This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.


Subject(s)
Refuse Disposal/methods , Waste Management/methods , Cambodia , Cities , Conservation of Natural Resources , Refuse Disposal/economics , Waste Management/economics , Waste Products/classification , Waste Products/economics
10.
J Gen Appl Microbiol ; 43(2): 105-108, 1997 Apr.
Article in English | MEDLINE | ID: mdl-12501341

ABSTRACT

Acinetobacter sp. strain ST-1, isolated from garden soil, can mineralize 4-chlorobenzoic acid (4-CBA). The bacterium degrades 4-CBA, starting with dehalogenation to yield 4-hydroxybenzoic acid (4-HBA) under both aerobic and anaerobic conditions, suggesting that the dehalogenating enzyme in the strain is not an oxygenase; the enzyme may catalyze halide hydrolysis. To identify the oxygen source of the C(4)-hydroxy groups in the dehalogenation step, we used H(2)(18)O as the solvent under anaerobic conditions. When resting cells were incubated in the presence of 4-CBA and H(2)(18)O under a nitrogen gas stream, the hydroxy group on the aromatic nucleus of the 4-HBA produced was derived from water, not from molecular oxygen. This dehalogenation was hydrolytic, because analysis of the mass spectrum of the trimethylsilyl derivative of one of the metabolites, (18)O-labeled 4-HBA, showed that 80% of the C4-hydroxy groups were labeled with (18)O. Hydrolytic dehalogenation of 4-CBA in intact cells has not been reported earlier. To identify substrate specificity, we next examined the ability of the strain to dehalogenate 4-CBA analogues and dichlorobenzoic acids. The results of metabolite analysis by high-pressure liquid chromatography showed that the strain dehalogenated 4-bromobenzoic acid and 4-iodobenzoic acid, yielding 4-HBA, suggesting that these compounds could be further degraded and mineralized by the strain via the beta-ketoadipate pathway, as occurs with 4-CBA. This strain, however, did not dehalogenate 4-fluorobenzoic acid, 2- and 3-chlorobenzoic acids, or 2,4-, 3,4-, and 3,5-dichlorobenzoic acids during 4 days of incubation, implying that the dehalogenating enzyme of the strain has high substrate specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...