Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Methods Mol Biol ; 2813: 79-94, 2024.
Article in English | MEDLINE | ID: mdl-38888771

ABSTRACT

RNA sequencing (RNA-seq) analysis of virus-infected host cells enables researchers to study a wide range of phenomena involving host-virus interactions. This includes genomic analysis of the viral population itself, as well as analysis of the transcriptional dynamics of the virus and host during infection. In this chapter, we provide a guide for researchers interested in performing RNA-seq data analysis of virus-infected host cells or cell lines. We outline several bioinformatic protocols for quantifying viral abundance, assembling viral genomes from mixed samples, and performing differential expression analysis, among other common workflows. These workflows can be used as starting points for researchers aiming to analyze RNA-seq datasets of mixed samples containing both host and viral RNA, such as virus-infected cell lines or clinical samples.


Subject(s)
Computational Biology , RNA-Seq , Humans , RNA-Seq/methods , Computational Biology/methods , RNA, Viral/genetics , Host-Pathogen Interactions/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Transcriptome , Genome, Viral , Software , Viruses/genetics , Virus Diseases/virology , Virus Diseases/genetics , High-Throughput Nucleotide Sequencing/methods , Cell Line
2.
Br J Clin Pharmacol ; 90(9): 2137-2158, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38817198

ABSTRACT

AIM: Understanding how COVID-19 impacts the expression of clinically relevant drug metabolizing enzymes and membrane transporters (DMETs) is vital for addressing potential safety and efficacy concerns related to systemic and peripheral drug concentrations. This study investigates the impact of COVID-19 severity on DMETs expression and the underlying mechanisms to inform the design of precise clinical dosing regimens for affected patients. METHODS: Transcriptomics analysis of 102 DMETs, 10 inflammatory markers, and 12 xenosensing regulatory genes was conducted on nasopharyngeal swabs from 50 SARS-CoV-2 positive (17 outpatients, 16 non-ICU, and 17 ICU) and 13 SARS-CoV-2 negative individuals, clinically tested through qPCR, in the Greater Toronto area from October 2020 to October 2021. RESULTS: We observed a significant differential gene expression for 42 DMETs, 6 inflammatory markers, and 9 xenosensing regulatory genes. COVID-19 severity was associated with the upregulation of AKR1C1, MGST1, and SULT1E1, and downregulation of ABCC10, CYP3A43, and SLC29A4 expressions. Altogether, SARS-CoV-2-positive patients showed an upregulation in CYP2C9, CYP2C19, AKR1C1, SULT1B1, SULT2B1, and SLCO4A1 and downregulation in FMO5, MGST3, ABCC5, and SLCO4C1 compared with SARS-CoV-2 negative individuals. These dysregulations were associated with significant changes in the expression of inflammatory and xenosensing regulatory genes driven by the disease. GSTM3, PPARA, and AKR1C1 are potential biomarkers of the observed DMETs dysregulation pattern in nasopharyngeal swabs of outpatients, non-ICU, and ICU patients, respectively. CONCLUSION: The severity of COVID-19 is associated with the dysregulation of DMETs involved in processing commonly prescribed drugs, suggesting potential disease-drug interactions, especially for narrow therapeutic index drugs.


Subject(s)
COVID-19 , Membrane Transport Proteins , Nasopharynx , SARS-CoV-2 , Severity of Illness Index , Humans , Male , Nasopharynx/virology , Female , Middle Aged , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Adult , Aged , Gene Expression Profiling/methods
3.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496499

ABSTRACT

Acute sinusitis (AS) is the fifth leading cause of antibiotic prescriptions in children. Distinguishing bacterial AS from common viral upper respiratory infections in children is crucial to prevent unnecessary antibiotic use but is challenging with current diagnostic methods. Despite its speed and cost, untargeted RNA sequencing of clinical samples from children with suspected AS has the potential to overcome several limitations of other methods. However, the utility of sequencing-based approaches in analysis of AS has not been fully explored. Here, we performed RNA-seq of nasopharyngeal samples from 221 children with clinically diagnosed AS to characterize their pathogen and host-response profiles. Results from RNA-seq were compared with those obtained using culture for three common bacterial pathogens and qRT-PCR for 12 respiratory viruses. Metatranscriptomic pathogen detection showed high concordance with culture or qRT-PCR, showing 87%/81% sensitivity (sens) / specificity (spec) for detecting bacteria, and 86%/92% (sens/spec) for viruses, respectively. We also detected an additional 22 pathogens not tested for in the clinical panel, and identified plausible pathogens in 11/19 (58%) of cases where no organism was detected by culture or qRT-PCR. We assembled genomes of 205 viruses across the samples including novel strains of coronaviruses, respiratory syncytial virus (RSV), and enterovirus D68. By analyzing host gene expression, we identified host-response signatures that distinguished bacterial and viral infections and correlated with pathogen abundance. Ultimately, our study demonstrates the potential of untargeted metatranscriptomics for in depth analysis of the etiology of AS, comprehensive host-response profiling, and using these together to work towards optimized patient care.

4.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903340

ABSTRACT

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Subject(s)
Biomedical Technology , Pulmonary Medicine , Translational Science, Biomedical , Humans , United States
5.
ACS Appl Mater Interfaces ; 15(47): 54234-54248, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37964517

ABSTRACT

Extrusion three-dimensional (3D) bioprinting is a promising technology with many applications in the biomedical and tissue engineering fields. One of the key limitations for the widespread use of this technology is the narrow window of printability that results from the need to have bioinks with rheological properties that allow the extrusion of continuous filaments while maintaining high cell viability within the materials during and after printing. In this work, we use Carbopol (CBP) as rheology modifier for extrusion printing of biomaterials that are typically nonextrudable or present low printability. We show that low concentrations of CBP can introduce the desired rheological properties for a wide range of formulations, allowing the use of polymers with different cross-linking mechanisms and the introduction of additives and cells. To explore the opportunities and limitations of CBP as a rheology modifier, we used ink formulations based on poly(ethylene glycol)diacrylate with extrusion 3D printing to produce soft, yet stable, hydrogels with tunable mechanical properties. Cell-laden constructs made with such inks presented high viability for cells seeded on top of cross-linked materials and cells incorporated within the bioink during printing, showing that the materials are noncytotoxic and the printed structures do not degrade for up to 14 days. To our knowledge, this is the first report of the use of CBP-containing bioinks to 3D-print complex cell-laden structures that are stable for days and present high cell viability. The use of CBP to obtain highly printable inks can accelerate the evolution of extrusion 3D bioprinting by guaranteeing the required rheological properties and expanding the number of materials that can be successfully printed. This will allow researchers to develop and optimize new bioinks focusing on the biochemical, cellular, and mechanical requirements of the targeted applications rather than the rheology needed to achieve good printability.


Subject(s)
Bioprinting , Polymers , Bioprinting/methods , Biocompatible Materials/chemistry , Tissue Engineering/methods , Printing, Three-Dimensional , Rheology , Hydrogels/chemistry , Ink , Tissue Scaffolds/chemistry
6.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38020563

ABSTRACT

Rationale: Despite its increasingly widespread use, little is known about the impact of cannabis smoking on the response to viral infections like influenza A virus (IAV). Many assume that cannabis smoking will disrupt antiviral responses in a manner similar to cigarette smoking; however, since cannabinoids exhibit anti-inflammatory effects, cannabis smoke exposure may impact viral infection in distinct ways. Methods: Male and female BALB/c mice were exposed daily to cannabis smoke and concurrently intranasally instilled with IAV. Viral burden, inflammatory mediator levels (multiplex ELISA), lung immune cells populations (flow cytometry) and gene expression patterns (RNA sequencing) were assessed in the lungs. Plasma IAV-specific antibodies were measured via ELISA. Results: We found that cannabis smoke exposure increased pulmonary viral burden while decreasing total leukocytes, including macrophages, monocytes and dendritic cell populations in the lungs. Furthermore, infection-induced upregulation of certain inflammatory mediators (interferon-γ and C-C motif chemokine ligand 5) was blunted by cannabis smoke exposure, which in females was linked to the transcriptional downregulation of pathways involved in innate and adaptive immune responses. Finally, plasma levels of IAV-specific IgM and IgG1 were significantly decreased in cannabis smoke-exposed, infected mice compared to infected controls, only in female mice. Conclusions: Overall, cannabis smoke exposure disrupted host-defence processes, leading to increased viral burden and dampened inflammatory signalling. These results suggest that cannabis smoking is detrimental to the maintenance of pulmonary homeostasis during viral infection and highlight the need for data regarding the impact on immune competency in humans.

7.
Sci Rep ; 13(1): 14745, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679460

ABSTRACT

ABCF1 is the most characterized member of the ABCF family in eukaryotes with proposed functions related to innate immunity in fibroblasts, macrophages, and epithelial cells. Currently, a mechanistic link between ABCF1 and immune responses in human airway epithelial cells (HAECs) remains to be clearly defined. The present study aimed at characterizing the function of ABCF1 in the context of nuclear factor nuclear factor κB (NF-κB) mediated pro-inflammatory responses in an immortalized human airway epithelial cell line, HBEC-6KT. We demonstrated that with ABCF1 silencing under basal conditions, TNF Alpha Induced Protein 3 (TNFAIP3/A20) protein expression and downstream expression and activation of transcription factors, NF-κB and Interferon regulatory factor 3 (IRF-3), were not disrupted. We followed with investigations of ABCF1 function under a pro-inflammatory stimuli that are known to be regulated by A20. We demonstrated that under Polyinosinic:polycytidylic acid (Poly(I:C)) and tumor Necrosis Factor-α (TNF-α) challenge with ABCF1 silencing, there was a significant reduction in secreted levels of interleukin-8 (IL-8) and a trend for reduced IL-6. However, we observed no changes to the expression levels of A20 and the activation status of the transcription factors, NF-κB and IRF-3. Collectively, these studies demonstrate that Poly(I:C) and TNF-α induced IL-8 is regulated by ABCF1 via pathways independent of NF-κB and IRF-3 activation.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-8/genetics , Signal Transduction , Epithelial Cells , Poly I-C/pharmacology , ATP-Binding Cassette Transporters
8.
BMC Infect Dis ; 23(1): 596, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37700242

ABSTRACT

Acute otitis media (AOM) is the most common childhood bacterial infectious disease requiring antimicrobial therapy. Most cases of AOM are caused by translocation of Streptococcus pneumoniae or Haemophilus influenzae from the nasopharynx to the middle ear during an upper respiratory tract infection (URI). Ongoing genomic surveillance of these pathogens is important for vaccine design and tracking of emerging variants, as well as for monitoring patterns of antibiotic resistance to inform treatment strategies and stewardship.In this work, we examined the ability of a genomics-based workflow to determine microbiological and clinically relevant information from cultured bacterial isolates obtained from patients with AOM or an URI. We performed whole genome sequencing (WGS) and analysis of 148 bacterial isolates cultured from the nasopharynx (N = 124, 94 AOM and 30 URI) and ear (N = 24, all AOM) of 101 children aged 6-35 months presenting with AOM or an URI. We then performed WGS-based sequence typing and antimicrobial resistance profiling of each strain and compared results to those obtained from traditional microbiological phenotyping.WGS of clinical isolates resulted in 71 S. pneumoniae genomes and 76 H. influenzae genomes. Multilocus sequencing typing (MSLT) identified 33 sequence types for S. pneumoniae and 19 predicted serotypes including the most frequent serotypes 35B and 3. Genome analysis predicted 30% of S. pneumoniae isolates to have complete or intermediate penicillin resistance. AMR predictions for S. pneumoniae isolates had strong agreement with clinical susceptibility testing results for beta-lactam and non beta-lactam antibiotics, with a mean sensitivity of 93% (86-100%) and a mean specificity of 98% (94-100%). MLST identified 29 H. influenzae sequence types. Genome analysis identified beta-lactamase genes in 30% of H. influenzae strains, which was 100% in agreement with clinical beta-lactamase testing. We also identified a divergent highly antibiotic-resistant strain of S. pneumoniae, and found its closest sequenced strains, also isolated from nasopharyngeal samples from over 15 years ago.Ultimately, our work provides the groundwork for clinical WGS-based workflows to aid in detection and analysis of H. influenzae and S. pneumoniae isolates.


Subject(s)
Influenza, Human , Otitis Media , Respiratory Tract Infections , Child , Humans , Streptococcus pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Drug Resistance, Bacterial/genetics , Genomics , Haemophilus influenzae/genetics , Penicillins
9.
ACS Omega ; 8(22): 19976-19986, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37305294

ABSTRACT

Soluble signaling molecules and extracellular matrix (ECM) regulate cell dynamics in various biological processes. Wound healing assays are widely used to study cell dynamics in response to physiological stimuli. However, traditional scratch-based assays can damage the underlying ECM-coated substrates. Here, we use a rapid, non-destructive, label-free magnetic exclusion technique to form annular aggregates of bronchial epithelial cells on tissue-culture treated (TCT) and ECM-coated surfaces within 3 h. The cell-free areas enclosed by the annular aggregates are measured at different times to assess cell dynamics. The effects of various signaling molecules, including epidermal growth factor (EGF), oncostatin M, and interleukin 6, on cell-free area closures are investigated for each surface condition. Surface characterization techniques are used to measure the topography and wettability of the surfaces. Further, we demonstrate the formation of annular aggregates on human lung fibroblast-laden collagen hydrogel surfaces, which mimic the native tissue architecture. The cell-free area closures on hydrogels indicate that the substrate properties modulate EGF-mediated cell dynamics. The magnetic exclusion-based assay is a rapid and versatile alternative to traditional wound healing assays.

10.
Immunol Cell Biol ; 101(5): 412-427, 2023 05.
Article in English | MEDLINE | ID: mdl-36862017

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis. To date, the impact of activating transcription factor 6 alpha (ATF6α), one of the UPR mediators, on the composition and function of pulmonary macrophage subpopulations during lung injury and fibrogenesis is not fully understood. We began by examining the expression of Atf6α in IPF patients' lung single-cell RNA sequencing dataset, archived surgical lung specimens, and CD14+ circulating monocytes. To assess the impact of ATF6α on pulmonary macrophage composition and pro-fibrotic function during tissue remodeling, we conducted an in vivo myeloid-specific deletion of Atf6α. Flow cytometric assessments of pulmonary macrophages were carried out in C57BL/6 and myeloid specific ATF6α-deficient mice in the context of bleomycin-induced lung injury. Our results demonstrated that Atf6α mRNA was expressed in pro-fibrotic macrophages found in the lung of a patient with IPF and in CD14+ circulating monocytes obtained from blood of a patient with IPF. After bleomycin administration, the myeloid-specific deletion of Atf6α altered the pulmonary macrophage composition, expanding CD11b+ subpopulations with dual polarized CD38+ CD206+ expressing macrophages. Compositional changes were associated with an aggravation of fibrogenesis including increased myofibroblast and collagen deposition. A further mechanistic ex vivo investigation revealed that ATF6α was required for CHOP induction and the death of bone marrow-derived macrophages. Overall, our findings suggest a detrimental role for the ATF6α-deficient CD11b+ macrophages which had altered function during lung injury and fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Mice , Animals , Lung Injury/metabolism , Activating Transcription Factor 6/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/adverse effects , Bleomycin/metabolism
12.
Biophys Rev (Melville) ; 4(2): 021302, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38510343

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.

13.
Front Bioeng Biotechnol ; 10: 959335, 2022.
Article in English | MEDLINE | ID: mdl-36329705

ABSTRACT

Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.

14.
iScience ; 25(7): 104614, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35756893

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) protein is a key catalytic regulator of the renin-angiotensin system (RAS), involved in fluid homeostasis and blood pressure modulation. ACE2 also serves as a cell-surface receptor for some coronaviruses such as SARS-CoV and SARS-CoV-2. Improved characterization of ACE2 regulation may help us understand the effects of pre-existing conditions on COVID-19 incidence, as well as pathogenic dysregulation following viral infection. Here, we perform bioinformatic analyses to hypothesize on ACE2 gene regulation in two different physiological contexts, identifying putative regulatory elements of ACE2 expression. We perform functional validation of our computational predictions via targeted CRISPR-Cas9 deletions of these elements in vitro, finding them responsive to immune signaling and oxidative-stress pathways. This contributes to our understanding of ACE2 gene regulation at baseline and immune challenge. Our work supports pursuit of these putative mechanisms in our understanding of infection/disease caused by current, and future, SARS-related viruses such as SARS-CoV-2.

16.
Lab Chip ; 22(10): 1929-1942, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35383790

ABSTRACT

Organ-on-a-chip systems that recapitulate tissue-level functions have been proposed to improve in vitro-in vivo correlation in drug development. Significant progress has been made to control the cellular microenvironment with mechanical stimulation and fluid flow. However, it has been challenging to introduce complex 3D tissue structures due to the physical constraints of microfluidic channels or membranes in organ-on-a-chip systems. Inspired by 4D bioprinting, we develop a subtractive manufacturing technique where a flexible sacrificial material can be patterned on a 2D surface, swell and shape change when exposed to aqueous hydrogel, and subsequently degrade to produce perfusable networks in a natural hydrogel matrix that can be populated with cells. The technique is applied to fabricate organ-specific vascular networks, vascularized kidney proximal tubules, and terminal lung alveoli in a customized 384-well plate and then further scaled to a 24-well plate format to make a large vascular network, vascularized liver tissues, and for integration with ultrasound imaging. This biofabrication method eliminates the physical constraints in organ-on-a-chip systems to incorporate complex ready-to-perfuse tissue structures in an open-well design.


Subject(s)
Bioprinting , Tissue Engineering , Bioprinting/methods , Hydrogels/chemistry , Microfluidics , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
17.
Lab Invest ; 102(8): 814-825, 2022 08.
Article in English | MEDLINE | ID: mdl-35437316

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis. We developed a custom tissue microarray using regions of pathological interest and interrogated tissues via immunohistochemistry and in situ hybridization. Severe acute respiratory syndrome coronavirus 2 was detected in 16/21 patients, in cardiomyocytes, the endothelium, interstitial spaces, and percolating adipocytes within the myocardium. Virus detection typically corresponded with troponin depletion and increased cleaved caspase-3. Indirect mechanisms of injury-venous and arterial thromboses with associated vasculitis including a mixed inflammatory infiltrate-were also observed. Neutrophil extracellular traps (NETs) were present in the myocardium of all COVID-19 patients, regardless of injury degree. Borderline myocarditis (inflammation without associated myocyte injury) was observed in 19/21 patients, characterized by a predominantly mononuclear inflammatory infiltrate. Edema, inflammation of percolating adipocytes, lymphocytic aggregates, and large septal masses of inflammatory cells and platelets were observed as defining features, and myofibrillar damage was evident in all patients. Collectively, COVID-19-associated cardiac injury was multifactorial, with elevated levels of NETs and von Willebrand factor as defining features of direct and indirect viral injury.


Subject(s)
COVID-19 , Myocarditis , Autopsy , COVID-19/complications , Humans , Inflammation , Myocytes, Cardiac
18.
Lab Invest ; 102(1): 14-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34608239

ABSTRACT

The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.


Subject(s)
Heart Failure/pathology , Herpesvirus 4, Human/genetics , Parvovirus B19, Human/genetics , Virus Diseases/diagnosis , Adult , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/virology , Cohort Studies , Female , Heart Failure/virology , Herpesvirus 4, Human/physiology , Humans , In Situ Hybridization/methods , Male , Middle Aged , Myocarditis/pathology , Myocarditis/virology , Parvovirus B19, Human/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Sensitivity and Specificity , Tissue Array Analysis/methods , Virus Diseases/virology
20.
Front Bioeng Biotechnol ; 9: 773511, 2021.
Article in English | MEDLINE | ID: mdl-34900964

ABSTRACT

Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.

SELECTION OF CITATIONS
SEARCH DETAIL