Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6778, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514802

ABSTRACT

An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear. Here, we show the three-dimensional structure and substrate preference of TGW6 using X-ray crystallography, thermal shift assays and fluorine nuclear magnetic resonance (19F NMR). The crystal structure of TGW6 was determined at 2.6 Å resolution and exhibited a six-bladed ß-propeller structure. Thermal shift assays revealed that TGW6 preferably interacted with indole compounds among the tested substrates, enzyme products and their analogs. Further analysis using 19F NMR with 1,134 fluorinated fragments emphasized the importance of indole fragments in recognition by TGW6. Finally, docking simulation analyses of the substrate and related fragments in the presence of TGW6 supported the interaction specificity for indole compounds. Herein, we describe the structure and substrate preference of TGW6 for interacting with indole fragments during substrate recognition. Uncovering the molecular details of TGW6 activity will stimulate the use of this enzyme for increasing crop yields and contributes to functional studies of IAA glycoconjugate hydrolases in auxin homeostasis.


Subject(s)
Glucose , Hydrolases , Plant Breeding , Indoleacetic Acids/chemistry , Indoles , Edible Grain
2.
Ann Bot ; 133(2): 287-304, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37832038

ABSTRACT

BACKGROUND AND AIMS: HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS: We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS: Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one ß-carbonic anhydrase, Hdß-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdß-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS: We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Photosynthesis , Anions/metabolism , Plant Leaves/metabolism , Membrane Transport Proteins/metabolism , Carbon Dioxide/metabolism
3.
PLoS One ; 16(11): e0260474, 2021.
Article in English | MEDLINE | ID: mdl-34813609

ABSTRACT

Ceylon cinnamon, which was regarded as a luxury spice during ancient times, has been consumed for its medicinal properties and health benefits for thousands of years. For centuries, Arabian traders controlled the European cinnamon trade through limited supplies from a country which they did not reveal. Content marketing analysis and chemical profiling of value-added products of Ceylon cinnamon in the global marketplace are proposed to investigate the clean status of the product labels. In the present study, a mixed-method approach was employed to investigate the labels of 6 types of value-added forms of cinnamon; i.e. quills, powder, tea, breakfast cereals, confectionery and bakery and nutraceuticals which are used in USA, UK, Mexico, Japan and products of Sri Lankan cinnamon exporters. Two hundred and seventy-six labels were analyzed to find out the aspects of clean status, transparency and authenticity. Key label claims of the cinnamon products lie within the bounds of cleaner, healthy, nutritional and sustainable attributes. Consumer perception lies within ingredients, nutritional value, country of origin and claim on safety and quality standards and certification. The value chain transparency, ethical rules (species mislabeling), and chemical profile of the pharmaceutical, confectionery and fragrance industry inputs were ignored. The best claim and competitive advantage of the Ceylon cinnamon; an ultra-low level (<0.01 mg/g Dry Weight) of Coumarin, were rarely indicated in labels. Lack of clean labels and traceability lagged Ceylon cinnamon in the 40 international markets while Cassia cinnamon (Coumarin content 2.23 mg/g DW), a major competitor of Ceylon cinnamon appears in the market with dirty labels. Millennials and upper-middle-class female consumers in their active ages, place a high demand on Ceylon cinnamon. Today's tech-savvy global consumers of Ceylon cinnamon use market intelligence frequently for identifying product authenticity. Well equipped clean labels were found to be demanded by the modern cinnamon consumers.


Subject(s)
Cinnamomum zeylanicum , Food Labeling , Spices , Cinnamomum zeylanicum/chemistry , Marketing , Nutritive Value , Spices/analysis , Spices/supply & distribution
4.
Protein Expr Purif ; 188: 105975, 2021 12.
Article in English | MEDLINE | ID: mdl-34536500

ABSTRACT

Rice is the staple food for over half the world's population. Genes associated with rice yield include THOUSAND GRAIN WEIGHT 6 (TGW6), which negatively regulates the number of endosperm cells as well as grain weight. The 1-bp deletion allele of tgw6 cloned from the Indian landrace rice cultivar Kasalath, which has lost function, enhances both grain size and yield. TGW6 has been utilized as a target for breeding and genome editing to increase the yield of rice. In the present study, we describe an improved heterologous expression system of TGW6 in Escherichia coli to enable purification of the recombinant protein. The best expression was achieved using codon optimized TGW6 with a 30 amino acid truncation at the N-terminus (Δ30TGW6) in the Rosetta-gami 2(DE3) host strain. Furthermore, we found that calcium ions were critical for the purification of stable Δ30TGW6. Crystals of Δ30TGW6 were obtained using the sitting-drop vapor-diffusion method at 283 K, which diffracted X-rays to at least 2.6 Å resolution. Herein, we established an efficient procedure for the production and purification of TGW6 in sufficient quantities for structural and functional studies. Detailed information concerning the molecular mechanism of TGW6 will enable the design of more efficient ways to control the activity of the enzyme.


Subject(s)
Genome, Plant , Oryza/genetics , Plant Proteins/genetics , Seeds/genetics , Silent Mutation , Amino Acid Sequence , Calcium/chemistry , Cations, Divalent , Cloning, Molecular , Codon , Crystallization , Edible Grain , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Oryza/metabolism , Plant Breeding , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Seeds/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
5.
Front Plant Sci ; 12: 675507, 2021.
Article in English | MEDLINE | ID: mdl-34220895

ABSTRACT

Hygrophila polysperma is a heterophyllous amphibious plant. The growth of H. polysperma in submerged conditions is challenging due to the low CO2 environment, increased resistance to gas diffusion, and bicarbonate ion (HCO3 -) being the dominant dissolved inorganic carbon source. The submerged leaves of H. polysperma have significantly higher rates of underwater photosynthesis compared with the terrestrial leaves. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion exchanger protein inhibitor, and ethoxyzolamide (EZ), an inhibitor of internal carbonic anhydrase, repressed underwater photosynthesis by the submerged leaves. These results suggested that H. polysperma acclimates to the submerged condition by using HCO3 - for photosynthesis. H. polysperma transports HCO3 - into the leaf by a DIDS-sensitive HCO3 - transporter and converted to CO2 by carbonic anhydrase. Additionally, proteome analysis revealed that submerged leaves accumulated fewer proteins associated with C4 photosynthesis compared with terrestrial leaves. This finding suggested that H. polysperma is capable of C4 and C3 photosynthesis in the terrestrial and submerged leaves, respectively. The ratio of phosphoenol pyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the submerged leaves was less than that in the terrestrial leaves. Upon anatomical observation, the terrestrial leaves exhibited a phenotype similar to the Kranz anatomy found among C4 plants; however, chloroplasts in the bundle sheath cells were not located adjacent to the vascular bundles, and the typical Kranz anatomy was absent in submerged leaves. These results suggest that H. polysperma performs proto-Kranz type photosynthesis in a terrestrial environment and shifts from a proto-Kranz type in terrestrial leaves to a HCO3 - use photosynthesis in the submerged environments.

6.
Foods ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374851

ABSTRACT

Phytic acid (PA) is a storage form of phosphorus in seeds. Phytase enzyme is activated at germination and hydrolyses PA into myo-inositol and inorganic phosphate. PA inhibits the absorption of minerals in the human intestine by chelation. Its degradation, therefore, is a key factor to improve mineral bioavailability in rice. Germinated brown rice (GBR) is favoured because it improves the availability of nutrients, and thus have a positive effect on health. In this study, we show the effects of soaking temperature on phytase activity and PA content in GBR. Rice phytase showed thermostability and its activity peaked at 50 °C. After 36 h of soaking, phytase activity was significantly increased at 50 °C and PA content was significantly decreased, compared to that at 30 °C. Zinc (Zn) analysis revealed that there was no significant difference in Zn content among different temperature treatments. Calculated total daily absorbed Zn (TAZ) was significantly higher in GBR compared with non-soaked seeds. Moreover, brown rice grains germinated at 50 °C showed a higher TAZ value than that at 30 °C. Seed germination and seed water soaking at high temperatures reduce PA content in brown rice showing a potentially effective way to improve mineral bioavailability in brown rice.

7.
Plant Cell Environ ; 43(9): 2033-2053, 2020 09.
Article in English | MEDLINE | ID: mdl-32281116

ABSTRACT

Phosphorus (P) is an essential mineral nutrient for plants. Nevertheless, excessive P accumulation in leaf mesophyll cells causes necrotic symptoms in land plants; this phenomenon is termed P toxicity. However, the detailed mechanisms underlying P toxicity in plants have not yet been elucidated. This study aimed to investigate the molecular mechanism of P toxicity in rice. We found that under excessive inorganic P (Pi) application, Rubisco activation decreased and photosynthesis was inhibited, leading to lipid peroxidation. Although the defence systems against reactive oxygen species accumulation were activated under excessive Pi application conditions, the Cu/Zn-type superoxide dismutase activities were inhibited. A metabolic analysis revealed that excessive Pi application led to an increase in the cytosolic sugar phosphate concentration and the activation of phytic acid synthesis. These conditions induced mRNA expression of genes that are activated under metal-deficient conditions, although metals did accumulate. These results suggest that P toxicity is triggered by the attenuation of both photosynthesis and metal availability within cells mediated by phytic acid accumulation. Here, we discuss the whole phenomenon of P toxicity, beginning from the accumulation of Pi within cells to death in land plants.


Subject(s)
Oryza/metabolism , Phosphorus/toxicity , Phytic Acid/metabolism , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ascorbate Peroxidases/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Cytosol/drug effects , Cytosol/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation, Plant/drug effects , Oryza/drug effects , Phosphorus/metabolism , Photosynthesis/drug effects , Photosynthesis/physiology , Plant Leaves/drug effects , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
8.
Plants (Basel) ; 9(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979223

ABSTRACT

Phytic acid (PA) prevents the absorption of minerals in the human intestine, and it is regarded as an antinutrient. Low PA rice is beneficial because of its higher Zn bioavailability and it is suggested that the gene expression level of myo-inositol 3-phosphate synthase 1 (INO1) in developing grain is a key factor to explain the genotypic difference in PA accumulation among natural variants of rice. P fertilization is also considered to affect the PA content, but it is not clear how it affects INO1 gene expression and the PA content in different genotypes. Here, we investigated the effect of P fertilization on the PA content in two contrasting rice genotypes, with low and high PA accumulation, respectively. Based on the results of the analysis of the PA content, inorganic P content, INO1 gene expression, and xylem sap inorganic P content, we concluded that the effect of P fertilization on PA accumulation in grain differed with the genotype, and it was regulated by multiple mechanisms.

9.
Sci Rep ; 9(1): 14866, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619750

ABSTRACT

Phytic acid (PA) is the primary phosphorus (P) storage compound in the seeds of cereals and legumes. Low PA crops, which are considered an effective way to improve grain nutrient availability and combat environmental issues relating to seed P have been developed using mutational and reverse genetics approaches. Here, we identify molecular mechanism regulating PA content among natural rice variants. First, we performed genome-wide association (GWA) mapping of world rice core collection (WRC) accessions to understand the genetic determinants underlying PA trait in rice. Further, a comparative study was undertaken to identify the differences in PA accumulation, protein profiles, and gene expression in low (WRC 5) and high PA (WRC 6) accessions. GWA results identified myo-inositol 3-phosphate synthase 1 (INO1) as being closely localized to a significant single nucleotide polymorphism. We found high rates of PA accumulation 10 days after flowering, and our results indicate that INO1 expression was significantly higher in WRC 6 than in WRC 5. Seed proteome assays found that the expression of INO1 was significantly higher in WRC 6. These results suggest that not only the gene itself but regulation of INO1 gene expression at early developmental stages is important in determining PA content in rice.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Intramolecular Lyases/genetics , Oryza/genetics , Plant Proteins/genetics , Seeds/genetics , Chromosome Mapping , Edible Grain , Gene Expression Regulation, Developmental , Genome-Wide Association Study , Inositol Phosphates/metabolism , Intramolecular Lyases/metabolism , Oryza/growth & development , Oryza/metabolism , Phytic Acid/metabolism , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Seeds/growth & development , Seeds/metabolism
10.
PLoS One ; 14(3): e0212840, 2019.
Article in English | MEDLINE | ID: mdl-30835761

ABSTRACT

Increased concentrations of atmospheric CO2 are predicted to reduce the content of essential elements such as protein, zinc, and iron in C3 grains and legumes, threatening the nutrition of billions of people in the next 50 years. However, this prediction has mostly been limited to grain crops, and moreover, we have little information about either the underlying mechanism or an effective intervention to mitigate these reductions. Here, we present a broader picture of the reductions in elemental content among crops grown under elevated CO2 concentration. By using a new approach, flow analysis of elements, we show that lower absorption and/or translocation to grains is a key factor underlying such elemental changes. On the basis of these findings, we propose two effective interventions-namely, growing C4 instead of C3 crops, and genetic improvements-to minimize the elemental changes in crops, and thereby avoid an impairment of human nutrition under conditions of elevated CO2.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/physiology , Crop Production/methods , Crops, Agricultural/physiology , Photosynthesis/physiology , Crop Production/trends , Crops, Agricultural/chemistry , Fabaceae/chemistry , Fabaceae/physiology , Feeding Behavior/physiology , Food Supply , Humans , Micronutrients/administration & dosage , Micronutrients/physiology , Oryza/chemistry , Oryza/physiology , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/physiology
11.
AoB Plants ; 11(2): plz009, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30911367

ABSTRACT

Hygrophila difformis, a heterophyllous amphibious plant, develops serrated or dissected leaves when grown in terrestrial or submerged conditions, respectively. In this study, we tested whether submerged leaves and ethylene-induced leaves of the heterophyllous, amphibious plant H. difformis have improved photosynthetic ability under submerged conditions. Also, we investigated how this amphibious plant photosynthesizes underwater and whether a HCO3 - transport system is present. We have analysed leaf morphology, measured underwater photosynthetic rates and HCO3 - affinity in H. difformis to determine if there are differences in acclimation ability dependent on growth conditions: terrestrial, submerged, terrestrial treated with ethylene and submerged treated with an ethylene inhibitor. Moreover, we measured time courses for changes in leaf anatomical characteristics and underwater photosynthesis in terrestrial leaves after submersion. Compared with the leaves of terrestrially grown plants, leaf thickness of submerged plants was significantly thinner. The stomatal density on the abaxial surface of submerged leaves was also reduced, and submerged plants had a significantly higher O2 evolution rate. When the leaves of terrestrially grown plants were treated with ethylene, their leaf morphology and underwater photosynthesis increased to levels comparable to those of submerged leaves. Underwater photosynthesis of terrestrial leaves was significantly higher by 5 days after submersion. In contrast, leaf morphology did not change after submergence. Submerged leaves and submerged terrestrial leaves were able to use bicarbonate but submerged terrestrial leaves had an intermediate ability to use HCO3 - that was between terrestrial leaves and submerged leaves. Ethoxyzolamide, an inhibitor of intracellular carbonic anhydrase, significantly inhibited underwater photosynthesis in submerged leaves. This amphibious plant acclimates to the submerged condition by changing leaf morphology and inducing a HCO3 - utilizing system, two processes that are regulated by ethylene.

12.
Plant Cell Environ ; 41(6): 1233-1246, 2018 06.
Article in English | MEDLINE | ID: mdl-29611206

ABSTRACT

Rising atmospheric carbon dioxide concentration ([CO2 ]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2 ] (e[CO2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2 ], despite the emerging evidence of e[CO2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2 ] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/pharmacology , Plant Cells/metabolism , Plant Development , Photosynthesis/drug effects , Plant Cells/drug effects , Plant Development/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology
13.
Rice (N Y) ; 11(1): 4, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29327163

ABSTRACT

Myo-inositol hexaphosphate, also known as phytic acid (PA), is the most abundant storage form of phosphorus in seeds. PA acts as a strong chelator of metal cations to form phytate and is considered an anti-nutrient as it reduces the bioavailability of important micronutrients. Although the major nutrient source for more than one-half of the global population, rice is a poor source of essential micronutrients. Therefore, biofortification and reducing the PA content of rice have arisen as new strategies for increasing micronutrient bioavailability in rice. Furthermore, global climate change effects, particularly rising atmospheric carbon dioxide concentration, are expected to increase the PA content and reduce the concentrations of most of the essential micronutrients in rice grain. Several genes involved in PA biosynthesis have been identified and characterized in rice. Proper understanding of the genes related to PA accumulation during seed development and creating the means to suppress the expression of these genes should provide a foundation for manipulating the PA content in rice grain. Low-PA rice mutants have been developed that have a significantly lower grain PA content, but these mutants also had reduced yields and poor agronomic performance, traits that challenge their effective use in breeding programs. Nevertheless, transgenic technology has been effective in developing low-PA rice without hampering plant growth or seed development. Moreover, manipulating the micronutrient distribution in rice grain, enhancing micronutrient levels and reducing the PA content in endosperm are possible strategies for increasing mineral bioavailability. Therefore, a holistic breeding approach is essential for developing successful low-PA rice lines. In this review, we focus on the key determinants for PA concentration in rice grain and discuss the possible molecular methods and approaches for manipulating the PA content to increase micronutrient bioavailability.

14.
Sci Rep ; 7(1): 15958, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162918

ABSTRACT

Little is known about the genetic basis of leaf and canopy photosynthesis. Here we aimed to detect novel quantitative trait loci (QTL) controlling photosynthesis by increasing leaf nitrogen content (LNC) per leaf area and analysed its effect on leaf and canopy photosynthesis. To identify QTL that increase photosynthetic rate in leaves, we screened chromosome segment substitution lines (CSSLs) of Oryza sativa ssp. japonica cultivar Koshihikari and O. sativa ssp. indica cultivar Nona Bokra using LNC per leaf area as the phenotype indicator. Locus leaf nitrogen content on chromosome four (qLNC4) is associated with increased LNC and photosynthetic rate per leaf area. Moreover, a non-synonymous amino acid substitution was identified in the NARROW LEAF 1 (NAL1) gene located in the qLNC4 region. This NAL1 allele increases LNC and photosynthetic rate per leaf area in flag leaves but does not increase whole-leaf photosynthesis. This NAL1 allele also increases light capture and whole-leaf nitrogen content of the lower leaves and is associated with slower senescence in flag leaves. These results suggest that this NAL1 allele does not increase whole-leaf photosynthesis but plays a role in regulating spatial and temporal trade-offs among traits at the whole-plant level.


Subject(s)
Loss of Function Mutation/genetics , Oryza/genetics , Oryza/physiology , Photosynthesis , Plant Leaves/physiology , Plant Proteins/genetics , Light , Molecular Sequence Annotation , Nitrogen/metabolism , Odds Ratio , Oryza/radiation effects , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Plant Proteins/metabolism , Quantitative Trait Loci/genetics
15.
Front Physiol ; 8: 578, 2017.
Article in English | MEDLINE | ID: mdl-28848452

ABSTRACT

Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2].

16.
Front Plant Sci ; 7: 764, 2016.
Article in English | MEDLINE | ID: mdl-27375636

ABSTRACT

Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice.

17.
Biochem Biophys Res Commun ; 477(3): 426-32, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27320861

ABSTRACT

N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans.


Subject(s)
Oryza/metabolism , Polysaccharides/metabolism , Carbohydrate Sequence , Light , Mass Spectrometry , Oryza/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Polysaccharides/chemistry
18.
Carbohydr Res ; 418: 1-8, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26513758

ABSTRACT

All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and differentiation of organisms. Glycans which exist in rice germ are expected to have an important role in germination. In this study, we performed structural and correlation analysis of the N-glycans in rice germ before and after germination. Our results confirmed that the N-glycans in the ungerminated stage of the rice germ had low number of N-glycans consisting only of six kinds especially with high-mannose and paucimannose type N-glycans being 16.0% and 76.7%, respectively. On the other hand, after 48 hours germinated germ stage, there was an increase in the complex type N-glycans with the appearance of Lewis a structure, the most complex type and a decrease in paucimannose types. These results suggest that at least six kinds of N-glycans are utilized for long time preservation of rice seed, while the diversification of most complex types of N-glycans is produced an environment dependent for shoot formation of rice.


Subject(s)
Germination , Oryza/chemistry , Oryza/growth & development , Polysaccharides/analysis , Oryza/metabolism , Polysaccharides/metabolism
19.
Nat Genet ; 45(6): 707-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23583977

ABSTRACT

Increases in the yield of rice, a staple crop for more than half of the global population, are imperative to support rapid population growth. Grain weight is a major determining factor of yield. Here, we report the cloning and functional analysis of THOUSAND-GRAIN WEIGHT 6 (TGW6), a gene from the Indian landrace rice Kasalath. TGW6 encodes a novel protein with indole-3-acetic acid (IAA)-glucose hydrolase activity. In sink organs, the Nipponbare tgw6 allele affects the timing of the transition from the syncytial to the cellular phase by controlling IAA supply and limiting cell number and grain length. Most notably, loss of function of the Kasalath allele enhances grain weight through pleiotropic effects on source organs and leads to significant yield increases. Our findings suggest that TGW6 may be useful for further improvements in yield characteristics in most cultivars.


Subject(s)
Hydrolases/genetics , Oryza/enzymology , Plant Proteins/genetics , Seeds/enzymology , Catalytic Domain , Chromosome Mapping , Cloning, Molecular , Gene Expression , Genetic Pleiotropy , Haplotypes , Hydrolases/chemistry , Hydrolases/metabolism , Hydrolysis , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Models, Molecular , Molecular Sequence Data , Oryza/genetics , Oryza/growth & development , Plant Proteins/chemistry , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Structural Homology, Protein
20.
Plant Methods ; 6: 12, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20409329

ABSTRACT

BACKGROUND: Genotype analysis using multiple single nucleotide polymorphisms (SNPs) is a useful but labor-intensive or high-cost procedure in plant research. Here we describe an alternative genotyping method that is suited to multi-sample or multi-locus SNP genotyping and does not require electrophoresis or specialized equipment. RESULTS: We have developed a simple method for multi-sample or multi-locus SNP genotyping using allele-specific primers (ASP). More specifically, we (1) improved the design of allele-specific primers, (2) established a method to detect PCR products optically without electrophoresis, and (3) standardized PCR conditions for parallel genomic assay using various allele-specific primers. As an illustration of multi-sample SNP genotyping using ASP, we mapped the locus for lodging resistance in a typhoon (lrt5). Additionally, we successfully tested multi-locus ASP-PCR analysis using 96 SNPs located throughout the genomes of rice (Oryza sativa) cultivars 'Koshihikari' and 'Kasalath', and demonstrated its applicability to other diverse cultivars/subspecies, including wild rice (O. rufipogon). CONCLUSION: Our ASP methodology allows characterization of SNPs genotypes without electrophoresis, expensive probes or specialized equipment, and is highly versatile due to the flexibility in the design of primers. The method could be established easily in any molecular biology laboratory, and is applicable to diverse organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...