Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 624(7990): 173-181, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030723

ABSTRACT

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Subject(s)
Alleles , Gene Expression Regulation , Ubiquitin-Protein Ligases , Animals , Female , Male , Mice , DNA Methylation , Dosage Compensation, Genetic , Embryonic Development , Enhancer Elements, Genetic , Haploinsufficiency , Histones/metabolism , Mice, Knockout , Promoter Regions, Genetic , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Genome Res ; 32(7): 1242-1253, 2022 07.
Article in English | MEDLINE | ID: mdl-35710300

ABSTRACT

Structural variants (SVs) can affect protein-coding sequences as well as gene regulatory elements. However, SVs disrupting protein-coding sequences that also function as cis-regulatory elements remain largely uncharacterized. Here, we show that craniosynostosis patients with SVs containing the histone deacetylase 9 (HDAC9) protein-coding sequence are associated with disruption of TWIST1 regulatory elements that reside within the HDAC9 sequence. Based on SVs within the HDAC9-TWIST1 locus, we defined the 3'-HDAC9 sequence as a critical TWIST1 regulatory region, encompassing craniofacial TWIST1 enhancers and CTCF sites. Deletions of either Twist1 enhancers (eTw5-7Δ/Δ) or CTCF site (CTCF-5Δ/Δ) within the Hdac9 protein-coding sequence led to decreased Twist1 expression and altered anterior/posterior limb expression patterns of SHH pathway genes. This decreased Twist1 expression results in a smaller sized and asymmetric skull and polydactyly that resembles Twist1+/- mouse phenotype. Chromatin conformation analysis revealed that the Twist1 promoter interacts with Hdac9 sequences that encompass Twist1 enhancers and a CTCF site, and that interactions depended on the presence of both regulatory regions. Finally, a large inversion of the entire Hdac9 sequence (Hdac9 INV/+) in mice that does not disrupt Hdac9 expression but repositions Twist1 regulatory elements showed decreased Twist1 expression and led to a craniosynostosis-like phenotype and polydactyly. Thus, our study elucidates essential components of TWIST1 transcriptional machinery that reside within the HDAC9 sequence. It suggests that SVs encompassing protein-coding sequences could lead to a phenotype that is not attributed to its protein function but rather to a disruption of the transcriptional regulation of a nearby gene.


Subject(s)
Craniosynostoses , Histone Deacetylases , Nuclear Proteins , Polydactyly , Repressor Proteins , Twist-Related Protein 1 , Animals , Craniosynostoses/genetics , Gene Expression Regulation , Histone Deacetylases/genetics , Humans , Mice , Nuclear Proteins/genetics , Phenotype , Polydactyly/genetics , Repressor Proteins/genetics , Twist-Related Protein 1/genetics
3.
PLoS Genet ; 14(10): e1007738, 2018 10.
Article in English | MEDLINE | ID: mdl-30372441

ABSTRACT

The transcription factor TWIST1 plays a vital role in mesoderm development, particularly in limb and craniofacial formation. Accordingly, haploinsufficiency of TWIST1 can cause limb and craniofacial malformations as part of Saethre-Chotzen syndrome. However, the molecular basis of TWIST1 transcriptional regulation during development has yet to be elucidated. Here, we characterized active enhancers in the TWIST1-HDAC9 locus that drive transcription in the developing limb and branchial arches. Using available p300 and H3K27ac ChIP-seq data, we identified 12 enhancer candidates, located both within and outside the coding sequences of the neighboring gene, Histone deacetyase 9 (HDAC9). Using zebrafish and mouse enhancer assays, we showed that eight of these candidates have limb/fin and branchial arch enhancer activity that resemble Twist1 expression. Using 4C-seq, we showed that the Twist1 promoter region interacts with three enhancers (eTw-5, 6, 7) in the limb bud and branchial arch of mouse embryos at day 11.5. Furthermore, we found that two transcription factors, LMX1B and TFAP2, bind these enhancers and modulate their enhancer activity. Finally, using CRISPR/Cas9 genome editing, we showed that homozygous deletion of eTw5-7 enhancers reduced Twist1 expression in the limb bud and caused pre-axial polydactyly, a phenotype observed in Twist1+/- mice. Taken together, our findings reveal that each enhancer has a discrete activity pattern, and together comprise a spatiotemporal regulatory network of Twist1 transcription in the developing limbs/fins and branchial arches. Our study suggests that mutations in TWIST1 enhancers could lead to reduced TWIST1 expression, resulting in phenotypic outcome as seen with TWIST1 coding mutations.


Subject(s)
Limb Deformities, Congenital/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/physiology , Animals , Branchial Region/metabolism , Enhancer Elements, Genetic/genetics , Extremities/embryology , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox , Histone Deacetylases/genetics , Homeodomain Proteins/genetics , Limb Buds/metabolism , Limb Deformities, Congenital/embryology , Mice , Mice, Inbred C57BL , Organogenesis , Repressor Proteins/genetics , Transcription Factor AP-2 , Transcription Factors/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
4.
Perspect Biol Med ; 58(2): 182-95, 2015.
Article in English | MEDLINE | ID: mdl-26750601

ABSTRACT

Most of our genome comprises noncoding sequences that include diverse transcriptional regulatory elements, such as enhancers, while only ~1.5% of the genome codes for proteins. Nevertheless, DNA sequences that code for protein (exons) can also function as enhancers (eExons) that regulate transcription. Mutations in eExons can lead to multiple phenotypes due to their dual function. The prevalence of protein-coding sequences that possess transcriptional regulatory function (such as eExons) and the consequences of their mutations are not well described. Using advanced sequencing technologies, protein-coding sequences were analyzed for their potential regulatory function in mammalian cells and found to be overrepresented in the genome (>6%). Dissection of the enhancer activity of eExons at single nucleotide resolution in liver cells has demonstrated that: (1) most nucleotide changes with high impact effect are deleterious; (2) deleterious enhancer mutations are correlated with the location of transcription factor-binding sites; (3) synonymous and non-synonymous mutations have similar effects on enhancer activity; and (4) the transcription factor repertoire that controls the activity of enhancers differs across cell types, indicating differences in deleterious mutation profiles. Thus, eExon mutations can disrupt both protein structure and enhancer activity with differential effect across cell types, suggesting that a mutation in a gene could cause a phenotype that has nothing to do with its protein-coding function but is due to its additional hidden regulatory function.


Subject(s)
DNA/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation , Animals , Base Sequence , DNA/genetics , Exons , Gene Expression Regulation , Genotype , Humans , Mutation , Phenotype , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL