Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662826

ABSTRACT

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Subject(s)
Axoneme , Centrioles , Cilia , Ciliary Motility Disorders , Tubulin , Animals , Humans , Mice , Axoneme/metabolism , Centrioles/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tubulin/genetics , Tubulin/metabolism , Male , Female , Mice, Knockout
2.
Nat Med ; 30(3): 875-887, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438734

ABSTRACT

Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.


Subject(s)
Hernias, Diaphragmatic, Congenital , Pregnancy , Female , Humans , Hernias, Diaphragmatic, Congenital/metabolism , Amniotic Fluid/metabolism , Prenatal Care , Lung/metabolism , Organoids/metabolism
3.
Nature ; 618(7965): 625-633, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258679

ABSTRACT

Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.


Subject(s)
Axoneme , Cilia , Ciliary Motility Disorders , Flagella , Mechanotransduction, Cellular , Humans , Male , Artificial Intelligence , Axonemal Dyneins/chemistry , Axonemal Dyneins/metabolism , Axonemal Dyneins/ultrastructure , Axoneme/chemistry , Axoneme/metabolism , Axoneme/ultrastructure , Cilia/chemistry , Cilia/metabolism , Cilia/ultrastructure , Cryoelectron Microscopy , Flagella/chemistry , Flagella/metabolism , Flagella/ultrastructure , Microtubules/metabolism , Chlamydomonas reinhardtii , Ciliary Motility Disorders/metabolism , Ciliary Motility Disorders/pathology , Ciliary Motility Disorders/physiopathology , Movement , Protein Conformation
4.
Sci Rep ; 11(1): 20607, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663891

ABSTRACT

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being 'pathogenic' or 'benign' is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as 'pathogenic' or 'likely pathogenic'; one in five of these cases could lead to new or refined diagnoses.


Subject(s)
Computational Biology/methods , Disease/genetics , RNA Splicing/genetics , Algorithms , Databases, Genetic , Diagnosis , Diagnosis, Differential , Diagnostic Techniques and Procedures , Exons/genetics , Genetic Variation/genetics , Genomics/methods , Humans , Mutation/genetics , RNA Precursors/genetics , RNA Splice Sites/genetics
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244442

ABSTRACT

Here, we report that important regulators of cilia formation and ciliary compartment-directed protein transport function in secretion polarity. Mutations in cilia genes cep290 and bbs2, involved in human ciliopathies, affect apical secretion of Cochlin, a major otolith component and a determinant of calcium carbonate crystallization form. We show that Cochlin, defective in human auditory and vestibular disorder, DFNA9, is secreted from small specialized regions of vestibular system epithelia. Cells of these regions secrete Cochlin both apically into the ear lumen and basally into the basal lamina. Basally secreted Cochlin diffuses along the basal surface of vestibular epithelia, while apically secreted Cochlin is incorporated into the otolith. Mutations in a subset of ciliopathy genes lead to defects in Cochlin apical secretion, causing abnormal otolith crystallization and behavioral defects. This study reveals a class of ciliary proteins that are important for the polarity of secretion and delineate a secretory pathway that regulates biomineralization.


Subject(s)
Ciliopathies/genetics , Otolithic Membrane/metabolism , Zebrafish Proteins/metabolism , Zebrafish/genetics , Amino Acid Sequence , Animals , Bardet-Biedl Syndrome/genetics , Base Sequence , Cilia/metabolism , Crystallization , Epistasis, Genetic , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental , Homozygote , Mutation/genetics , Phenotype , Zebrafish Proteins/genetics
6.
Eur Respir J ; 58(4)2021 10.
Article in English | MEDLINE | ID: mdl-33795320

ABSTRACT

BACKGROUND: Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS: We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS: Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.


Subject(s)
Ciliary Motility Disorders , Kartagener Syndrome , Cilia , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/drug therapy , Ciliary Motility Disorders/genetics , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Kartagener Syndrome/diagnosis , Kartagener Syndrome/drug therapy , Kartagener Syndrome/genetics , Mucociliary Clearance
7.
J Clin Med ; 9(11)2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33233428

ABSTRACT

Air-liquid interface (ALI) culture of nasal epithelial cells is a valuable tool in the diagnosis and research of primary ciliary dyskinesia (PCD). Ex vivo samples often display secondary dyskinesia from cell damage during sampling, infection or inflammation confounding PCD diagnostic results. ALI culture enables regeneration of healthy cilia facilitating differentiation of primary from secondary ciliary dyskinesia. We describe a revised ALI culture method adopted from April 2018 across three collaborating PCD diagnostic sites, including current University Hospital Southampton COVID-19 risk mitigation measures, and present results. Two hundred and forty nasal epithelial cell samples were seeded for ALI culture and 199 (82.9%) were ciliated. Fifty-four of 83 (63.9%) ex vivo samples which were originally equivocal or insufficient provided diagnostic information following in vitro culture. Surplus basal epithelial cells from 181 nasal brushing samples were frozen in liquid nitrogen; 39 samples were ALI-cultured after cryostorage and all ciliated. The ciliary beat patterns of ex vivo samples (by high-speed video microscopy) were recapitulated, scanning electron microscopy demonstrated excellent ciliation, and cilia could be immuno-fluorescently labelled (anti-alpha-tubulin and anti-RSPH4a) in representative cases that were ALI-cultured after cryostorage. In summary, our ALI culture protocol provides high ciliation rates across three centres, minimising patient recall for repeat brushing biopsies and improving diagnostic certainty. Cryostorage of surplus diagnostic samples was successful, facilitating PCD research.

8.
J Clin Med ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899853

ABSTRACT

Neonatal respiratory distress (NRD) is common among infants with primary ciliary dyskinesia (PCD), but we do not know whether affected neonates receive a timely diagnosis. We used data from the international PCD cohort and assessed the proportion of patients with PCD who had a history of NRD and their age at diagnosis, stratifying by presence of laterality defects. First we analyzed data from all participants diagnosed after 2000, followed by individuals from a subgroup diagnosed using stricter criteria. Among the 1375 patients in the study, 45% had a history of NRD and 42% had laterality defects. Out of the 476 children with definite PCD diagnosis, 55% had a history of NRD and 50% had laterality defects. Overall, 30% of children with PCD were diagnosed during the first 12 months of life. This varied from 13% in those with situs solitus and no NRD, to 21% in those with situs solitus and NRD, 33% in those with situs anomalies but no NRD, and 52% in those with both situs anomalies and NRD. Our results suggest that we need to improve our knowledge of the neonatal presentation of infants with PCD and apply it so that these patients will receive appropriate care sooner.

9.
BMC Proc ; 14(Suppl 8): 7, 2020.
Article in English | MEDLINE | ID: mdl-32577127

ABSTRACT

Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme.

10.
Eur Respir J ; 55(4)2020 04.
Article in English | MEDLINE | ID: mdl-32060067

ABSTRACT

Primary ciliary dyskinesia (PCD) is a heterogeneous genetic condition. European and North American diagnostic guidelines recommend transmission electron microscopy (TEM) as one of a combination of tests to confirm a diagnosis. However, there is no definition of what constitutes a defect or consensus on reporting terminology. The aim of this project was to provide an internationally agreed ultrastructural classification for PCD diagnosis by TEM.A consensus guideline was developed by PCD electron microscopy experts representing 18 centres in 14 countries. An initial meeting and discussion were followed by a Delphi consensus process. The agreed guideline was then tested, modified and retested through exchange of samples and electron micrographs between the 18 diagnostic centres.The final guideline a) provides agreed terminology and a definition of Class 1 defects which are diagnostic for PCD; b) identifies Class 2 defects which can indicate a diagnosis of PCD in combination with other supporting evidence; c) describes features which should be included in a ciliary ultrastructure report to assist multidisciplinary diagnosis of PCD; and d) defines adequacy of a diagnostic sample.This tested and externally validated statement provides a clear guideline for the diagnosis of PCD by TEM which can be used to standardise diagnosis internationally.


Subject(s)
Ciliary Motility Disorders , Kartagener Syndrome , Cilia , Eating , Humans , Kartagener Syndrome/diagnosis , Microscopy, Electron , Microscopy, Electron, Transmission
12.
J Med Genet ; 57(5): 322-330, 2020 05.
Article in English | MEDLINE | ID: mdl-31879361

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests. METHODS: The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries. RESULTS: Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results. CONCLUSIONS: This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening.


Subject(s)
Cilia/genetics , Ciliary Motility Disorders/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Alleles , Asian People/genetics , Cilia/pathology , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/pathology , Cohort Studies , Ethnicity/genetics , Female , Homozygote , Humans , Male , Mutation/genetics , Phenotype
14.
Thorax ; 74(2): 203-205, 2019 02.
Article in English | MEDLINE | ID: mdl-30166424

ABSTRACT

Primary ciliary dyskinesia (PCD) is associated with abnormal organ positioning (situs) and congenital heart disease (CHD). This study investigated genotype-phenotype associations in PCD to facilitate risk predictions for cardiac and laterality defects. This retrospective cohort study of 389 UK patients with PCD found 51% had abnormal situs and 25% had CHD and/or laterality defects other than situs inversus totalis. Patients with biallelic mutations in a subset of nine PCD genes had normal situs. Patients with consanguineous parents had higher odds of situs abnormalities than patients with non-consanguineous parents. Patients with abnormal situs had higher odds of CHD and/or laterality defects.


Subject(s)
Abnormalities, Multiple/epidemiology , Ciliary Motility Disorders/epidemiology , Heart Defects, Congenital/epidemiology , Situs Inversus/epidemiology , Abnormalities, Multiple/genetics , Ciliary Motility Disorders/genetics , Consanguinity , Female , Genetic Predisposition to Disease , Genotype , Heart Defects, Congenital/genetics , Humans , Male , Mutation , Phenotype , Prevalence , Retrospective Studies , Risk Factors , Situs Inversus/genetics , United Kingdom/epidemiology
15.
Am J Hum Genet ; 103(5): 727-739, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388400

ABSTRACT

Primary defects in motile cilia result in dysfunction of the apparatus responsible for generating fluid flows. Defects in these mechanisms underlie disorders characterized by poor mucus clearance, resulting in susceptibility to chronic recurrent respiratory infections, often associated with infertility; laterality defects occur in about 50% of such individuals. Here we report biallelic variants in LRRC56 (known as oda8 in Chlamydomonas) identified in three unrelated families. The phenotype comprises laterality defects and chronic pulmonary infections. High-speed video microscopy of cultured epithelial cells from an affected individual showed severely dyskinetic cilia but no obvious ultra-structural abnormalities on routine transmission electron microscopy (TEM). Further investigation revealed that LRRC56 interacts with the intraflagellar transport (IFT) protein IFT88. The link with IFT was interrogated in Trypanosoma brucei. In this protist, LRRC56 is recruited to the cilium during axoneme construction, where it co-localizes with IFT trains and is required for the addition of dynein arms to the distal end of the flagellum. In T. brucei carrying LRRC56-null mutations, or a variant resulting in the p.Leu259Pro substitution corresponding to the p.Leu140Pro variant seen in one of the affected families, we observed abnormal ciliary beat patterns and an absence of outer dynein arms restricted to the distal portion of the axoneme. Together, our findings confirm that deleterious variants in LRRC56 result in a human disease and suggest that this protein has a likely role in dynein transport during cilia assembly that is evolutionarily important for cilia motility.


Subject(s)
Biological Transport/genetics , Flagella/genetics , Mucociliary Clearance/genetics , Mutation/genetics , Proteins/genetics , Adult , Alleles , Axoneme/genetics , Cell Line , Chlamydomonas/genetics , Cilia/genetics , Dyneins/genetics , Epithelial Cells/pathology , Female , HEK293 Cells , Humans , Infant , Male , Phenotype , Trypanosoma brucei brucei/genetics
16.
Am J Hum Genet ; 103(6): 984-994, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30471717

ABSTRACT

Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.


Subject(s)
Axonemal Dyneins/genetics , Cilia/genetics , Dyneins/genetics , Mutation/genetics , Situs Inversus/genetics , Adolescent , Amino Acid Sequence , Child , Child, Preschool , Ciliary Motility Disorders/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Respiratory System/pathology , Sequence Alignment
17.
Respir Res ; 19(1): 125, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29940967

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia can result from a number of different ciliary defects that adversely affect ciliary function resulting markedly reduced or absent mucociliary clearance. Improvement in diagnostic testing is an area of current research. During diagnostic evaluation of PCD we observed ciliated conical protrusions from part of the apical surface of ciliated cells in those diagnosed with PCD. The aim of this study was to investigate if this abnormality was specific to PCD. METHODS: Epithelial edges from 67 consecutively diagnosed PCD patients, 67 patients consecutively referred for PCD diagnostic testing in whom PCD was excluded, 22 with asthma and 18 with Cystic Fibrosis (CF) were studied retrospectively in a blinded manner using light microscopy. RESULTS: Forty six out of 67 patients with PCD had ciliated conical epithelial protrusions, whereas none were seen in patients where PCD was excluded, or in patients with asthma or CF. The sensitivity, specificity, positive predictive value and negative predictive value for the presence of the ciliated conical protrusions to predict a diagnosis of PCD were 76.5, 100, 100 and 77% respectively. CONCLUSIONS: Characteristic ciliated conical protrusions from ciliated epithelial cells maybe a useful pointer to the diagnosis of PCD. However, their absence does not exclude the diagnosis of PCD.


Subject(s)
Cilia/pathology , Cilia/physiology , Kartagener Syndrome/pathology , Mucociliary Clearance/physiology , Respiratory Mucosa/pathology , Respiratory Mucosa/physiology , Cells, Cultured , Humans
18.
BMC Proc ; 12(Suppl 2): 1, 2018.
Article in English | MEDLINE | ID: mdl-29630684

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The second BEAT-PCD conference, and third PCD training school were held jointly in April 2017 in Valencia, Spain. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.

19.
Thorax ; 73(2): 157-166, 2018 02.
Article in English | MEDLINE | ID: mdl-28790179

ABSTRACT

RATIONALE: Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265. Early, accurate diagnosis is key to implementing appropriate management but clinical diagnostic tests can be equivocal. OBJECTIVES: To determine the importance of genetic screening for primary ciliary dyskinesia in a UK South Asian population with a typical clinical phenotype, where standard testing is inconclusive. METHODS: Next-generation sequencing was used to screen 86 South Asian patients who had a clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 p.His154Pro missense variant compared with other dynein arm-associated gene mutations on diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity was assessed by oligomerisation assay. RESULTS: Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation which was found to disrupt protein oligomerisation. Variable diagnostic test results were obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus are missed. CONCLUSIONS: The CCDC103 p.His154Pro mutation is more prevalent than previously thought in the South Asian community and causes primary ciliary dyskinesia that can be difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there is a strong clinical phenotype with inconclusive standard diagnostic tests.


Subject(s)
Asian People/genetics , Kartagener Syndrome/ethnology , Kartagener Syndrome/genetics , Microtubule-Associated Proteins/genetics , Mutation/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Pakistan/ethnology , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...