Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Cancer Res ; 84(7): 1065-1083, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38383964

ABSTRACT

Triple-negative breast cancer (TNBC) chemoresistance hampers the ability to effectively treat patients. Identification of mechanisms driving chemoresistance can lead to strategies to improve treatment. Here, we revealed that protein arginine methyltransferase-1 (PRMT1) simultaneously methylates D-3-phosphoglycerate dehydrogenase (PHGDH), a critical enzyme in serine synthesis, and the glycolytic enzymes PFKFB3 and PKM2 in TNBC cells. 13C metabolic flux analyses showed that PRMT1-dependent methylation of these three enzymes diverts glucose toward intermediates in the serine-synthesizing and serine/glycine cleavage pathways, thereby accelerating the production of methyl donors in TNBC cells. Mechanistically, PRMT1-dependent methylation of PHGDH at R54 or R20 activated its enzymatic activity by stabilizing 3-phosphoglycerate binding and suppressing polyubiquitination. PRMT1-mediated PHGDH methylation drove chemoresistance independently of glutathione synthesis. Rather, activation of the serine synthesis pathway supplied α-ketoglutarate and citrate to increase palmitate levels through activation of fatty acid synthase (FASN). Increased palmitate induced protein S-palmitoylation of PHGDH and FASN to further enhance fatty acid synthesis in a PRMT1-dependent manner. Loss of PRMT1 or pharmacologic inhibition of FASN or protein S-palmitoyltransferase reversed chemoresistance in TNBC. Furthermore, IHC coupled with imaging MS in clinical TNBC specimens substantiated that PRMT1-mediated methylation of PHGDH, PFKFB3, and PKM2 correlates with chemoresistance and that metabolites required for methylation and fatty acid synthesis are enriched in TNBC. Together, these results suggest that enhanced de novo fatty acid synthesis mediated by coordinated protein arginine methylation and protein S-palmitoylation is a therapeutic target for overcoming chemoresistance in TNBC. SIGNIFICANCE: PRMT1 promotes chemoresistance in TNBC by methylating metabolic enzymes PFKFB3, PKM2, and PHGDH to augment de novo fatty acid synthesis, indicating that targeting this axis is a potential treatment strategy.


Subject(s)
Phosphoglycerate Dehydrogenase , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Serine/metabolism , Palmitates , Fatty Acids , Cell Line, Tumor , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins
2.
Mol Genet Metab Rep ; 35: 100968, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36974075

ABSTRACT

The pyruvate dehydrogenase complex serves as the main connection between cytosolic glycolysis and the tricarboxylic acid cycle within mitochondria. An infant with pyruvate dehydrogenase complex deficiency was treated with vitamin B1 supplementation and a ketogenic diet. These dietary modifications resolved the renal tubular reabsorption, central apnea, and transfusion-dependent anemia. A concurrent metabolome analysis demonstrated the resolution of the amino aciduria and an increased total amount of substrates in the tricarboxylic acid cycle, reflecting the improved mitochondrial energetics. Glutamate was first detected in the cerebrospinal fluid, accompanied by a clinical improvement, after the ketogenic ratio was increased to 3:1; thus, glutamate levels in cerebrospinal fluid may represent a biomarker for neuronal recovery. Metabolomic analyses of body fluids are useful for monitoring therapeutic effects in infants with inborn errors of carbohydrate metabolism.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36829799

ABSTRACT

Pathological examination of formalin-fixed paraffin-embedded (FFPE) needle-biopsied samples by certified pathologists represents the gold standard for differential diagnosis between ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC), while information of marker metabolites in the samples is lost in the samples. Infrared laser-scanning large-area surface-enhanced Raman spectroscopy (SERS) equipped with gold-nanoparticle-based SERS substrate enables us to visualize metabolites in fresh-frozen needle-biopsied samples with spatial matching between SERS and HE staining images with pathological annotations. DCIS (n = 14) and IBC (n = 32) samples generated many different SERS peaks in finger-print regions of SERS spectra among pathologically annotated lesions including cancer cell nests and the surrounding stroma. The results showed that SERS peaks in IBC stroma exhibit significantly increased polysulfide that coincides with decreased hypotaurine as compared with DCIS, suggesting that alterations of these redox metabolites account for fingerprints of desmoplastic reactions to distinguish IBC from DCIS. Furthermore, the application of supervised machine learning to the stroma-specific multiple SERS signals enables us to support automated differential diagnosis with high accuracy. The results suggest that SERS-derived biochemical fingerprints derived from redox metabolites account for a hallmark of desmoplastic reaction of IBC that is absent in DCIS, and thus, they serve as a useful method for precision diagnosis in breast cancer.

4.
EMBO J ; 42(4): e110620, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36637036

ABSTRACT

Drug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine-resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain-of-function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif-1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine-resistant UC cells. Interestingly, IDH2-mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2-mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo-resistant urothelial carcinoma.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gemcitabine , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Pentose Phosphate Pathway , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics
5.
J Clin Biochem Nutr ; 70(1): 54-63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35068682

ABSTRACT

The liver has been thought to protect against oxidative stress through mechanisms involving reduced glutathione (GSH) that consumes high-energy phosphor-nucleotides on its synthesis. However, hepatoprotective mechanisms in acute liver failure (ALF) where the phosphor-nucleotides are decreased in remain to be solved. Liver tissues were collected from patients with ALF and liver cirrhosis (LC) and living donors (HD) who had undergone liver transplantation. Tissues were used for metabolomic analyses to determine metabolites belonging to the central carbon metabolism, and to determine sulfur-containing metabolites. ALF and LC exhibited a significant decline in metabolites of glycolysis and pentose phosphate pathways and high-energy phosphor-nucleotides such as adenosine triphosphate as compared with HD. Conversely, methionine, S-adenosyl-l-methionine, and the ratio of serine to 3-phosphoglycerate were elevated significantly in ALF as compared with LC and HD, suggesting a metabolic boost from glycolysis towards trans-sulfuration. Notably in ALF, the increases in hypotaurine (HTU) + taurine (TU) coincided with decreases in the total amounts of reduced and oxidized glutathione (GSH + 2GSSG). Plasma NH3 levels correlated with the ratio of HTU + TU to GSH + 2GSSG. Increased tissue levels of HTU + TU vs total glutathione appear to serve as a biomarker correlating with hyperammonemia, suggesting putative roles of the HTU-TU pathway in anti-oxidative protective mechanisms.

6.
Metabolites ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34940639

ABSTRACT

Cardiac dysfunction is induced by multifactorial mechanisms in diabetes. Deranged fatty acid (FA) utilization, known as lipotoxicity, has long been postulated as one of the upstream events in the development of diabetic cardiomyopathy. CD36, a transmembrane glycoprotein, plays a major role in FA uptake in the heart. CD36 knockout (CD36KO) hearts exhibit reduced rates of FA transport with marked enhancement of glucose use. In this study, we explore whether reduced FA use by CD36 ablation suppresses the development of streptozotocin (STZ)-induced diabetic cardiomyopathy. We found that cardiac contractile dysfunction had deteriorated 16 weeks after STZ treatment in CD36KO mice. Although accelerated glucose uptake was not reduced in CD36KO-STZ hearts, the total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. The isotopomer analysis with 13C6-glucose revealed that accelerated glycolysis, estimated by enrichment of 13C2-citrate and 13C2-malate, was markedly suppressed in CD36KO-STZ hearts. Levels of ceramides, which are cardiotoxic lipids, were not elevated in CD36KO-STZ hearts compared to wild-type-STZ ones. Furthermore, increased energy demand by transverse aortic constriction resulted in synergistic exacerbation of contractile dysfunction in CD36KO-STZ mice. These findings suggest that CD36KO-STZ hearts are energetically compromised by reduced FA use and suppressed glycolysis; therefore, the limitation of FA utilization is detrimental to cardiac energetics in this model of diabetic cardiomyopathy.

7.
Curr Res Struct Biol ; 3: 192-205, 2021.
Article in English | MEDLINE | ID: mdl-34485929

ABSTRACT

Human cytochromes P45011ß (CYP11B1) and P450aldo (CYP11B2) are monooxygenases that synthesize cortisol through steroid 11ß-hydroxylation and aldosterone through a three-step process comprising 11ß-hydroxylation and two 18-hydroxylations, respectively. CYP11B1 also catalyzes 18-monohydroxylation and 11ß,18-dihydroxylation. To study the molecular basis of such catalytic divergence of the two enzymes, we examined a CYP11B1 mutant (Mt-CYP11B1) with amino acid replacements on the distal surface by determining the catalytic activities and crystal structure in the metyrapone-bound form at 1.4-Å resolution. Mt-CY11B1 retained both 11ß-hydroxylase and 18-hydroxylase activities of the wild type (Wt-CYP11B1) but lacked 11ß,18-dihydroxylase activity. Comparisons of the crystal structure of Mt-CYP11B1 to those of Wt-CYP11B1 and CYP11B2 that were already reported show that the mutation reduced the innermost space putatively surrounding the C3 side of substrate 11-deoxycorticosterone (DOC) bound to Wt-CYP11B1, while the corresponding space in CYP11B2 is enlarged markedly and accessible to bulk water through a channel. Molecular dynamics simulations of their DOC-bound forms supported the above findings and revealed that the enlarged space of CYP11B2 had a hydrogen bonding network involving water molecules that position DOC. Thus, upon positioning 11ß-hydroxysteroid for 18-hydroxylation in their substrate-binding sites, steric hindrance could occur more strongly in Mt-CYP11B1 than in Wt-CYP11B1 but less in CYP11B2. Our investigation employing Mt-CYP11B1 sheds light on the divergence in structure and function between CYP11B1 and CYP11B2 and suggests that CYP11B1 with spatially-restricted substrate-binding site serves as 11ß-hydroxylase, while CYP11B2 with spatially-extended substrate-binding site successively processes additional 18-hydroxylations to produce aldosterone.

9.
Redox Biol ; 41: 101926, 2021 05.
Article in English | MEDLINE | ID: mdl-33752108

ABSTRACT

Chemosensitivity to cisplatin derivatives varies among individual patients with intractable malignancies including ovarian cancer, while how to unlock the resistance remain unknown. Ovarian cancer tissues were collected the debulking surgery in discovery- (n = 135) and validation- (n = 47) cohorts, to be analyzed with high-throughput automated immunohistochemistry which identified cystathionine γ-lyase (CSE) as an independent marker distinguishing non-responders from responders to post-operative platinum-based chemotherapy. We aimed to identify CSE-derived metabolites responsible for chemoresistant mechanisms: gold-nanoparticle (AuN)-based surface-enhanced Raman spectroscopy (SERS) was used to enhance electromagnetic fields which enabled to visualize multiple sulfur-containing metabolites through detecting scattering light from Au-S vibration two-dimensionally. Clear cell carcinoma (CCC) who turned out less sensitive to cisplatin than serous adenocarcinoma was classified into two groups by the intensities of SERS intensities at 480 cm-1; patients with greater intensities displayed the shorter overall survival after the debulking surgery. The SERS signals were eliminated by topically applied monobromobimane that breaks sulfane-sulfur bonds of polysulfides to result in formation of sulfodibimane which was detected at 580 cm-1, manifesting the presence of polysulfides in cancer tissues. CCC-derived cancer cell lines in culture were resistant against cisplatin, but treatment with ambroxol, an expectorant degrading polysulfides, renders the cells CDDP-susceptible. Co-administration of ambroxol with cisplatin significantly suppressed growth of cancer xenografts in nude mice. Furthermore, polysulfides, but neither glutathione nor hypotaurine, attenuated cisplatin-induced disturbance of DNA supercoiling. Polysulfide detection by on-tissue SERS thus enables to predict prognosis of cisplatin-based chemotherapy. The current findings suggest polysulfide degradation as a stratagem unlocking cisplatin chemoresistance.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin , Drug Resistance, Neoplasm , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Spectrum Analysis, Raman , Sulfides
10.
Cell Rep ; 34(1): 108579, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406421

ABSTRACT

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a unique enzyme introducing O-GlcNAc moiety on target proteins, and it critically regulates various cellular processes in diverse cell types. However, its roles in hematopoietic stem and progenitor cells (HSPCs) remain elusive. Here, using Ogt conditional knockout mice, we show that OGT is essential for HSPCs. Ogt is highly expressed in HSPCs, and its disruption induces rapid loss of HSPCs with increased reactive oxygen species and apoptosis. In particular, Ogt-deficient hematopoietic stem cells (HSCs) lose quiescence, cannot be maintained in vivo, and become vulnerable to regenerative and competitive stress. Interestingly, Ogt-deficient HSCs accumulate defective mitochondria due to impaired mitophagy with decreased key mitophagy regulator, Pink1, through dysregulation of H3K4me3. Furthermore, overexpression of PINK1 restores mitophagy and the number of Ogt-deficient HSCs. Collectively, our results reveal that OGT critically regulates maintenance and stress response of HSCs by ensuring mitochondrial quality through PINK1-dependent mitophagy.


Subject(s)
Hematopoietic Stem Cells/metabolism , Histones/metabolism , Mitochondria/metabolism , Mitophagy , N-Acetylglucosaminyltransferases/metabolism , Protein Kinases/metabolism , Acetylglucosamine/metabolism , Animals , Apoptosis , Cell Cycle , Cell Line , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological
11.
Sci Rep ; 10(1): 20809, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257783

ABSTRACT

Diabetes is an independent risk factor for the development of heart failure. Increased fatty acid (FA) uptake and deranged utilization leads to reduced cardiac efficiency and accumulation of cardiotoxic lipids, which is suggested to facilitate diabetic cardiomyopathy. We studied whether reduced FA uptake in the heart is protective against streptozotocin (STZ)-induced diabetic cardiomyopathy by using mice doubly deficient in fatty acid binding protein 4 (FABP4) and FABP5 (DKO mice). Cardiac contractile dysfunction was aggravated 8 weeks after STZ treatment in DKO mice. Although compensatory glucose uptake was not reduced in DKO-STZ hearts, total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. Tracer analysis with 13C6-glucose revealed that accelerated glycolysis in DKO hearts was strongly suppressed by STZ treatment. Levels of ceramides, cardiotoxic lipids, were similarly elevated by STZ treatment. These findings suggest that a reduction in total energy supply by reduced FA uptake and suppressed glycolysis could account for exacerbated contractile dysfunction in DKO-STZ hearts. Thus, enhanced FA uptake in diabetic hearts seems to be a compensatory response to reduced energy supply from glucose, and therefore, limited FA use could be detrimental to cardiac contractile dysfunction due to energy insufficiency.


Subject(s)
Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Fatty Acids/metabolism , Acetylation , Animals , Ceramides/metabolism , Citric Acid Cycle , Energy Metabolism , Female , Glucose/metabolism , Glycolysis , Ketone Bodies/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Streptozocin , Ventricular Dysfunction, Left
12.
iScience ; 23(9): 101535, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33083764

ABSTRACT

The role of lipid metabolism in human pluripotent stem cells (hPSCs) is poorly understood. We have used large-scale targeted proteomics to demonstrate that undifferentiated hPSCs express different fatty acid (FA) biosynthesis-related enzymes, including ATP citrate lyase and FA synthase (FASN), than those expressed in hPSC-derived cardiomyocytes (hPSC-CMs). Detailed lipid profiling revealed that inhibition of FASN resulted in significant reduction of sphingolipids and phosphatidylcholine (PC); moreover, we found that PC was the key metabolite for cell survival in hPSCs. Inhibition of FASN induced cell death in undifferentiated hPSCs via mitochondria-mediated apoptosis; however, it did not affect cell survival in hPSC-CMs, neurons, or hepatocytes as there was no significant reduction of PC. Furthermore, we did not observe tumor formation following transplantation of FASN inhibitor-treated cells. Our findings demonstrate the importance of de novo FA synthesis in the survival of undifferentiated hPSCs and suggest applications for FASN inhibition in regenerative medicine.

13.
Cancers (Basel) ; 12(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878320

ABSTRACT

Pancreatic cancer (PC) is among the most lethal malignancies due to an often delayed and difficult initial diagnosis. Therefore, the development of a novel, early stage, diagnostic PC marker in liquid biopsies is of great significance. In this study, we analyzed the differential glycomic profiling of extracellular vesicles (EVs) derived from serum (two cohorts including 117 PC patients and 98 normal controls) using lectin microarray. The glyco-candidates of PC-specific EVs were quantified using a high-sensitive exosome-counting system, ExoCounter. An absolute quantification system for altered glycan-containing EVs elevated in PC serum was established. EVs recognized by O-glycan-binding lectins ABA or ACA were identified as candidate markers by lectin microarray. Quantitative analyses using ExoCounter revealed that the ABA- or ACA-positive EVs were significantly increased in the culture of PC cell lines or in the serum of PC patients including carbohydrate antigen 19-9 negative patients with high area under curve values. The elevated numbers of EVs in PC serum returned to normal levels after pancreatectomy. Histological examination confirmed that the tumors stained with ABA/ACA. These specific EVs with O-glycans recognized by ABA/ACA are elevated in PC sera and can act as potential biomarkers in a liquid biopsy for PC patients screening.

14.
Commun Biol ; 3(1): 450, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807853

ABSTRACT

Under hypoxic conditions, nitroimidazoles can replace oxygen as electron acceptors, thereby enhancing the effects of radiation on malignant cells. These compounds also accumulate in hypoxic cells, where they can act as cytotoxins or imaging agents. However, whether these effects apply to cancer stem cells has not been sufficiently explored. Here we show that the 2-nitroimidazole doranidazole potentiates radiation-induced DNA damage in hypoxic glioma stem cells (GSCs) and confers a significant survival benefit in mice harboring GSC-derived tumors in radiotherapy settings. Furthermore, doranidazole and misonidazole, but not metronidazole, manifested radiation-independent cytotoxicity for hypoxic GSCs that was mediated by ferroptosis induced partially through blockade of mitochondrial complexes I and II and resultant metabolic alterations in oxidative stress responses. Doranidazole also limited the growth of GSC-derived subcutaneous tumors and that of tumors in orthotopic brain slices. Our results thus reveal the theranostic potential of 2-nitroimidazoles as ferroptosis inducers that enable targeting GSCs in their hypoxic niche.


Subject(s)
Brain Neoplasms/pathology , Ferroptosis , Glioma/pathology , Mitochondria/pathology , Neoplastic Stem Cells/pathology , Nitroimidazoles/pharmacology , Stress, Physiological , Animals , Brain/pathology , Brain Neoplasms/metabolism , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Female , Ferroptosis/drug effects , Glioma/metabolism , Imidazoles/pharmacology , Metabolome , Mice, Inbred C57BL , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Radiation-Sensitizing Agents/pharmacology , Stress, Physiological/drug effects
15.
Cancer Res ; 80(3): 471-483, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31767627

ABSTRACT

Recent studies have shown that stem cell memory T (TSCM) cell-like properties are important for successful adoptive immunotherapy by the chimeric antigen receptor-engineered-T (CAR-T) cells. We previously reported that both human and murine-activated T cells are converted into stem cell memory-like T (iTSCM) cells by coculture with stromal OP9 cells expressing the NOTCH ligand. However, the mechanism of NOTCH-mediated iTSCM reprogramming remains to be elucidated. Here, we report that the NOTCH/OP9 system efficiently converted conventional human CAR-T cells into TSCM-like CAR-T, "CAR-iTSCM" cells, and that mitochondrial metabolic reprogramming played a key role in this conversion. NOTCH signaling promoted mitochondrial biogenesis and fatty acid synthesis during iTSCM formation, which are essential for the properties of iTSCM cells. Forkhead box M1 (FOXM1) was identified as a downstream target of NOTCH, which was responsible for these metabolic changes and the subsequent iTSCM differentiation. Like NOTCH-induced CAR-iTSCM cells, FOXM1-induced CAR-iTSCM cells possessed superior antitumor potential compared with conventional CAR-T cells. We propose that NOTCH- or FOXM1-driven CAR-iTSCM formation is an effective strategy for improving cancer immunotherapy. SIGNIFICANCE: Manipulation of signaling and metabolic pathways important for directing production of stem cell memory-like T cells may enable development of improved CAR-T cells.


Subject(s)
Forkhead Box Protein M1/metabolism , Immunologic Memory/immunology , Leukemia/immunology , Organelle Biogenesis , Receptors, Chimeric Antigen/immunology , Receptors, Notch/metabolism , T-Lymphocytes/immunology , Animals , Cell Differentiation , Coculture Techniques , Humans , Immunotherapy, Adoptive , Leukemia/metabolism , Leukemia/pathology , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Signal Transduction , Stem Cells/immunology , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/pathology
16.
JCI Insight ; 4(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31723053

ABSTRACT

Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.


Subject(s)
Acute Kidney Injury , Adenine Nucleotides , Enzyme Inhibitors/pharmacology , Reperfusion Injury , Xanthine Oxidase/antagonists & inhibitors , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Adenine Nucleotides/analysis , Adenine Nucleotides/metabolism , Animals , Febuxostat/pharmacology , Kidney/chemistry , Kidney/drug effects , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology
17.
Front Microbiol ; 9: 2902, 2018.
Article in English | MEDLINE | ID: mdl-30555442

ABSTRACT

Coenzyme A (CoA) is an essential cofactor for numerous cellular reactions in all living organisms. In the protozoan parasite Entamoeba histolytica, CoA is synthesized in a pathway consisting of four enzymes with dephospho-CoA kinase (DPCK) catalyzing the last step. However, the metabolic and physiological roles of E. histolytica DPCK remain elusive. In this study, we took biochemical, reverse genetic, and metabolomic approaches to elucidate role of DPCK in E. histolytica. The E. histolytica genome encodes two DPCK isotypes (EhDPCK1 and EhDPCK2). Epigenetic gene silencing of Ehdpck1 and Ehdpck2 caused significant reduction of DPCK activity, intracellular CoA concentrations, and also led to growth retardation in vitro, suggesting importance of DPCK for CoA synthesis and proliferation. Furthermore, metabolomic analysis showed that suppression of Ehdpck gene expression also caused decrease in the level of acetyl-CoA, and metabolites involved in amino acid, glycogen, hexosamine, nucleic acid metabolisms, chitin, and polyamine biosynthesis. The kinetic properties of E. histolytica and human DPCK showed remarkable differences, e.g., the Km values of E. histolytica and human DPCK were 58-114 and 5.2 µM toward dephospho-CoA and 15-20 and 192 µM for ATP, respectively. Phylogenetic analysis also supported the uniqueness of the amebic enzyme compared to the human counterpart. These biochemical, evolutionary features, and physiological importance of EhDPCKs indicate that EhDPCK represents the rational target for the development of anti-amebic agents.

18.
Sci Rep ; 8(1): 12035, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104639

ABSTRACT

The energy metabolism of the failing heart is characterized by reduced fatty acid (FA) oxidation and an increase in glucose utilization. However, little is known about how energy metabolism-function relationship is relevant to pathophysiology of heart failure. Recent study showed that the genetic deletion of CD36 (CD36KO), which causes reduction in FA use with an increased reliance on glucose, accelerates the progression from compensated hypertrophy to heart failure. Here, we show the mechanisms by which CD36 deletion accelerates heart failure in response to pressure overload. CD36KO mice exhibited contractile dysfunction and death from heart failure with enhanced cardiac hypertrophy and interstitial fibrosis when they were subjected to transverse aortic constriction (TAC). The pool size in the TCA cycle and levels of high-energy phosphate were significantly reduced in CD36KO-TAC hearts despite an increase in glycolytic flux. De novo synthesis of non-essential amino acids was facilitated in CD36KO-TAC hearts, which could cause a further decline of the pool size. The ingestion of a diet enriched in medium-chain FA improved cardiac dysfunction in CD36KO-TAC hearts. These findings suggest that myocardial FA uptake through CD36 is indispensable for sufficient ATP production and for preventing an increased glycolytic flux-mediated structural remodeling during pressure overload-induced hypertrophy.


Subject(s)
CD36 Antigens/metabolism , Cardiomegaly/physiopathology , Energy Metabolism/physiology , Fatty Acids/metabolism , Heart Failure/physiopathology , Myocardium/metabolism , Amino Acids/biosynthesis , Animals , CD36 Antigens/genetics , Cardiomegaly/genetics , Citric Acid Cycle/physiology , Fibrosis/pathology , Heart/physiology , Heart Failure/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Clin Chem ; 64(10): 1463-1473, 2018 10.
Article in English | MEDLINE | ID: mdl-30021922

ABSTRACT

BACKGROUND: Although circulating exosomes in blood play crucial roles in cancer development and progression, difficulties in quantifying exosomes hamper their application for reliable clinical testing. By combining the properties of nanobeads with optical disc technology, we have developed a novel device named the ExoCounter to determine the exact number of exosomes in the sera of patients with various types of cancer. METHOD: In this system, individual exosomes were captured in the groove of an optical disc coated with antibodies against exosome surface antigens. The captured exosomes were labeled with antibody-conjugated magnetic nanobeads, and the number of the labeled exosomes was counted with an optical disc drive. RESULTS: We showed that the ExoCounter could detect specific exosomes derived from cells or human serum without any enrichment procedures. The detection sensitivity and linearity with this system were higher than those with conventional detection methods such as ELISA or flow cytometry. In addition to the ubiquitous exosome markers CD9 and CD63, the cancer-related antigens CD147, carcinoembryonic antigen, and human epidermal growth factor receptor 2 (HER2) were also used to quantify cancer cell line-derived exosomes. Furthermore, analyses of a cross-sectional cohort of sera samples revealed that HER2-positive exosomes were significantly increased in patients with breast cancer or ovarian cancer compared with healthy individuals and those with noncancer diseases. CONCLUSIONS: The ExoCounter system exhibits high performance in the direct detection of exosomes in cell culture and human sera. This method may enable reliable analysis of liquid biopsies.


Subject(s)
Antigens, Neoplasm/blood , Biomarkers, Tumor/blood , Exosomes , Lab-On-A-Chip Devices , Microchip Analytical Procedures/methods , Neoplasms/blood , A549 Cells , Exosomes/immunology , HCT116 Cells , HEK293 Cells , Humans , Sensitivity and Specificity , Staining and Labeling , Tetraspanin 30/immunology
20.
ASN Neuro ; 10: 1759091418775562, 2018.
Article in English | MEDLINE | ID: mdl-29768946

ABSTRACT

Oxidative stress plays an important role in the onset and progression of Parkinson disease. Although released dopamine at the synaptic terminal is mostly reabsorbed by dopaminergic neurons, some dopamine is presumably taken up by astroglia. This study examined the dopamine-induced astroglial protective function through the activation of the pentose-phosphate pathway (PPP) to reduce reactive oxygen species (ROS). In vitro experiments were performed using striatal neurons and cortical or striatal astroglia prepared from Sprague-Dawley rats or C57BL/6 mice. The rates of glucose phosphorylation in astroglia were evaluated using the [14C]deoxyglucose method. PPP activity was measured using [1-14C]glucose and [6-14C]glucose after acute (60 min) or chronic (15 hr) exposure to dopamine. ROS production was measured using 2',7'-dichlorodihydrofluorescein diacetate. The involvement of the Kelch-like ECH-associated protein 1 (Keap1) or nuclear factor-erythroid-2-related factor 2 (Nrf2) system was evaluated using Nrf2 gene knockout mice, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction analysis for heme oxygenase-1. Acute exposure to dopamine elicited increases in astroglial glucose consumption with lactate release. PPP activity in astroglia was robustly enhanced independently of Na+-dependent monoamine transporters. In contrast, chronic exposure to dopamine induced moderate increases in PPP activity via the Keap1/Nrf2 system. ROS production from dopamine increased gradually over 12 hr. Dopamine induced neuronal cell damage that was prevented by coculturing with astroglia but not with Nrf2-deficient astroglia. Dopamine-enhanced astroglial PPP activity in both acute and chronic manners may possibly reduce neuronal oxidative stress.


Subject(s)
Astrocytes/drug effects , Dopamine/pharmacology , Oxidative Stress/drug effects , Pentose Phosphate Pathway/drug effects , Animals , Brain/cytology , Cells, Cultured , Coculture Techniques , Dopamine/metabolism , Dose-Response Relationship, Drug , Embryo, Mammalian , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glucose/metabolism , Hydrogen Peroxide/pharmacology , Lactates/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/deficiency , NF-E2-Related Factor 2/genetics , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...