Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Immunol ; 205(3): 708-719, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32591391

ABSTRACT

Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.


Subject(s)
Granuloma/immunology , Nitric Oxide Synthase Type II/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , T-Box Domain Proteins/deficiency , Th1 Cells/immunology , Animals , Granuloma/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Mice , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Salmonella Infections/genetics , Salmonella typhimurium/genetics , T-Box Domain Proteins/immunology
2.
FEBS J ; 287(2): 250-266, 2020 01.
Article in English | MEDLINE | ID: mdl-31691481

ABSTRACT

The adult mammary gland undergoes dynamic changes during puberty and the postnatal developmental cycle. The mammary epithelium is composed of a bilayer of outer basal, or myoepithelial, cells and inner luminal cells, the latter lineage giving rise to the milk-producing alveolar cells during pregnancy. These luminal alveolar cells undergo Stat3-mediated programmed cell death following the cessation of lactation. It is established that immune cells in the microenvironment of the gland have a role to play both in the ductal outgrowth during puberty and in the removal of dead cells and remodelling of the stroma during the process of postlactational regression. However, most studies have focussed on the role of the stromal immune cell compartment or have quantified immune cell populations in tissue extracts. Our recent development of protocols for deep imaging of the mammary gland in three dimensions (3D) has enabled the architectural relationship between immune cells and the epithelium to be examined in detail, and we have discovered a surprisingly dynamic relationship between the basal epithelium and leucocytes. Furthermore, we have observed morphological changes in the myoepithelial cells, as involution progresses, which were not revealed by previous work in 2D tissue sections and whole tissue. This dynamic architecture suggests a role for myoepithelial cells in the orderly progression of involution. We conclude that deep imaging of mammary gland and other tissues is essential for analysing complex interactions between cellular compartments.


Subject(s)
Epithelial Cells/cytology , Leukocytes/cytology , Mammary Glands, Human/cytology , Animals , Female , Humans , Lactation , Mammary Glands, Human/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
3.
Blood ; 133(6): 600-604, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30401709

ABSTRACT

Thrombosis is a frequent, life-threatening complication of systemic infection associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days after infection, persisting after the infection resolves, and is monocytic cell dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared with the liver, being evident by 24 hours and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provides a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo.


Subject(s)
Liver/microbiology , Salmonella Infections/complications , Salmonella typhimurium/pathogenicity , Spleen/microbiology , Thrombosis/microbiology , Animals , Liver/immunology , Liver/pathology , Mice , Mice, Inbred C57BL , Salmonella Infections/microbiology , Spleen/immunology , Spleen/pathology , Thrombosis/immunology , Thrombosis/pathology
4.
Development ; 145(14)2018 07 25.
Article in English | MEDLINE | ID: mdl-30045917

ABSTRACT

Mammary gland development occurs over multiple phases, beginning in the mammalian embryo and continuing throughout reproductive life. The remarkable morphogenetic capacity of the mammary gland at each stage of development is attributed to the activities of distinct populations of mammary stem cells (MaSCs) and progenitor cells. However, the relationship between embryonic and adult MaSCs, and their fate during different waves of mammary gland morphogenesis, remains unclear. By employing a neutral, low-density genetic labelling strategy, we characterised the contribution of proliferative stem/progenitor cells to embryonic, pubertal and reproductive mammary gland development. Our findings further support a model of lineage restriction of MaSCs in the postnatal mammary gland, and highlight extensive redundancy and heterogeneity within the adult stem/progenitor cell pool. Furthermore, our data suggest extensive multiplicity in their foetal precursors that give rise to the primordial mammary epithelium before birth. In addition, using a single-cell labelling approach, we revealed the extraordinary capacity of a single embryonic MaSC to contribute to postnatal ductal development. Together, these findings provide tantalising new insights into the disparate and stage-specific contribution of distinct stem/progenitor cells to mammary gland development.


Subject(s)
Adult Stem Cells/cytology , Cell Lineage , Mammary Glands, Animal/cytology , Mouse Embryonic Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Proliferation , Embryonic Development , Mice , Morphogenesis , Mouse Embryonic Stem Cells/metabolism , Sexual Maturation , Single-Cell Analysis
5.
Breast Cancer Res ; 18(1): 127, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27964754

ABSTRACT

BACKGROUND: High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. METHODS: Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3D imaging of solvent-cleared organs, see deep brain (seeDB), clear unobstructed brain imaging cocktails (CUBIC) and passive clarity technique. Using confocal, two-photon and light sheet microscopy, their compatibility with whole-mount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. RESULTS: Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and whole-mount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. CONCLUSIONS: The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ, and will significantly enhance our understanding of both normal and pathological mammary gland development.


Subject(s)
Imaging, Three-Dimensional , Mammary Glands, Animal/diagnostic imaging , Mammary Neoplasms, Animal/diagnostic imaging , Mammary Neoplasms, Animal/pathology , Animals , Female , Fluorescent Antibody Technique , Imaging, Three-Dimensional/methods , Mice , Microscopy, Confocal , Optical Imaging/methods
6.
J Clin Invest ; 125(12): 4429-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26571395

ABSTRACT

Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin-like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI-mediated (GPVI-mediated) platelet activation. After infection, IFN-γ release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-γ, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding.


Subject(s)
Blood Platelets/metabolism , Lectins, C-Type/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Thrombosis/metabolism , Animals , Blood Platelets/pathology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Kupffer Cells/metabolism , Kupffer Cells/pathology , Lectins, C-Type/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Salmonella Infections/complications , Salmonella Infections/genetics , Salmonella Infections/pathology , Thrombosis/etiology , Thrombosis/genetics , Thrombosis/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
Breast Cancer Res ; 17: 68, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25990313

ABSTRACT

Neutralisation of macrophage chemoattractant C-C chemokine ligand 2 (CCL2) has shown reduced metastasis and enhanced survival in numerous experimental models of tumorigenesis. However, important new findings reported in Nature by Momo Bentires-Alj's laboratory demonstrate that withdrawal of anti-CCL2 treatment accelerates lung metastasis and death in mice. The study highlights the need to consider longer term consequences of therapeutic intervention of metastatic disease, especially with regard to transient interference with the tumour microenvironment.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Neoplasm Metastasis , Neovascularization, Pathologic , Animals , Female
8.
Nat Med ; 21(5): 467-475, 2015 May.
Article in English | MEDLINE | ID: mdl-25894827

ABSTRACT

During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3 zeta delta (14.3.3.ζδ) protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin-induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type 1 diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to that of healthy age-matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Control of patient T cell trafficking is re-established by treatment with exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic ischemia-reperfusion injury, Salmonella infection, uveitis and Sjögren's syndrome, PEPITEM reduced T cell recruitment into inflamed tissues.


Subject(s)
Autoimmunity/immunology , B-Lymphocytes/cytology , Gene Expression Regulation , Homeostasis , Inflammation/immunology , T-Lymphocytes/cytology , 14-3-3 Proteins/metabolism , Adiponectin/metabolism , Adult , Age Factors , Aged , Aging , Animals , Arthritis, Rheumatoid/blood , Cadherins/metabolism , Cell Adhesion , Cell Movement , Diabetes Mellitus, Type 1/blood , Female , Human Umbilical Vein Endothelial Cells , Humans , Lysophospholipids/metabolism , Male , Mice , Middle Aged , Peptides/chemistry , Receptors, Adiponectin/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Young Adult
9.
Eur J Immunol ; 44(8): 2318-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24825601

ABSTRACT

The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4(+) T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼ 30-fold increase in Sca-1(hi) progenitors and a corresponding loss of Sca-1(lo/int) subsets. Most strikingly, the capacity of donor Sca-1(hi) cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1(hi) c-kit(int) cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging.


Subject(s)
Bone Marrow Cells/immunology , Salmonella Infections, Animal/immunology , Stem Cells/immunology , Animals , Antigens, Ly/immunology , Bone Marrow Cells/microbiology , Bone Marrow Cells/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Homeostasis/immunology , Interferon-gamma/immunology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Salmonella/immunology , Salmonella Infections, Animal/pathology , Stem Cells/microbiology , Stem Cells/pathology
10.
J Immunol ; 189(12): 5527-32, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23162127

ABSTRACT

Vaccination with purified capsular polysaccharide Vi Ag from Salmonella typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. In this study, we have characterized the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with typhoid Vi polysaccharide vaccine rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone B cells. This induction of B1b proliferation is concomitant with the detection of splenic Vi-specific Ab-secreting cells and protective Ab in Rag1-deficient B1b cell chimeras generated by adoptive transfer-induced specific Ab after Vi immunization. Furthermore, Ab derived from peritoneal B cells is sufficient to confer protection against Salmonella that express Vi Ag. Expression of Vi by Salmonella during infection did not inhibit the development of early Ab responses to non-Vi Ags. Despite this, the protection conferred by immunization of mice with porin proteins from Salmonella, which induce Ab-mediated protection, was reduced postinfection with Vi-expressing Salmonella, although protection was not totally abrogated. This work therefore suggests that, in mice, B1b cells contribute to the protection induced by Vi Ag, and targeting non-Vi Ags as subunit vaccines may offer an attractive strategy to augment current Vi-based vaccine strategies.


Subject(s)
Antigens, Bacterial/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/microbiology , Polysaccharides, Bacterial/biosynthesis , Salmonella typhi/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/physiology , Antigens, Bacterial/biosynthesis , B-Lymphocyte Subsets/transplantation , Mice , Mice, Inbred C57BL , Mice, Knockout , Peritoneal Cavity/cytology , Peritoneal Cavity/microbiology , Peritoneum/cytology , Peritoneum/immunology , Peritoneum/metabolism , Polysaccharides, Bacterial/immunology , Porins , Salmonella Vaccines/administration & dosage , Salmonella Vaccines/biosynthesis , Salmonella Vaccines/immunology , Typhoid Fever/immunology , Typhoid Fever/metabolism , Typhoid Fever/prevention & control
11.
Infect Immun ; 79(11): 4342-52, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21859856

ABSTRACT

Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion/physiology , Biofilms , Gene Expression Regulation, Bacterial/physiology , Membrane Proteins/metabolism , Salmonella typhimurium/metabolism , Adhesins, Bacterial/genetics , Alum Compounds , Animals , Bacterial Adhesion/genetics , Caco-2 Cells , Escherichia coli K12/metabolism , Humans , Immunoglobulin G , Membrane Proteins/genetics , Mice , Phylogeny , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence
12.
Infection and Immunity ; 79(11): 4342-4352, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063424

ABSTRACT

Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromisedindividuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance becausethey are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA,a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. Wedemonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice.Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinalCaco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG responsewhich provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced byadministering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadAhaving pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection againstSalmonella.


Subject(s)
Mice , Adhesins, Bacterial/analysis , Adhesins, Bacterial/immunology , Adhesins, Bacterial/isolation & purification , Salmonella enterica/pathogenicity , Immunoglobulin G/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...