Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(33): 23230-23239, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39116214

ABSTRACT

TMEM175 is a lysosomal potassium and proton channel that is associated with the development of Parkinson's disease. Advances in understanding the physiological roles of TMEM175 have been hampered by the absence of selective inhibitors, and studies involving genetic perturbations have yielded conflicting results. Here, we report the discovery and characterization of the first reported TMEM175-selective inhibitors, 2-phenylpyridin-4-ylamine (2-PPA), and AP-6. Cryo-EM structures of human TMEM175 bound by 2-PPA and AP-6 reveal that they act as pore blockers, binding at distinct sites in the pore and occluding the ion permeation pathway. Acute inhibition of TMEM175 by 2-PPA or AP-6 increases the level of lysosomal macromolecule catabolism, thereby accelerating macropinocytosis and other digestive processes. These inhibitors may serve as valuable tools to study the roles of TMEM175 in regulating lysosomal function and provide useful templates for future therapeutic development in Parkinson's disease.


Subject(s)
Lysosomes , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Lysosomes/metabolism , Drug Discovery , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Ion Channels/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Models, Molecular , Cryoelectron Microscopy , Potassium Channels
2.
Nature ; 629(8012): 710-716, 2024 May.
Article in English | MEDLINE | ID: mdl-38693265

ABSTRACT

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Humans , Binding Sites , Biological Transport/genetics , Choline/chemistry , Choline/metabolism , Ethanolamine/chemistry , Ethanolamine/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphorylation , Mutagenesis
3.
Science ; 382(6672): 820-828, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37917749

ABSTRACT

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Subject(s)
ATP-Dependent Proteases , ATPases Associated with Diverse Cellular Activities , Glutathione , Mitochondria , Mitochondrial Proteins , Phosphate Transport Proteins , Glutathione/metabolism , Homeostasis , Iron/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Proteomics , Feedback, Physiological , Mitochondrial Proteins/metabolism , Phosphate Transport Proteins/metabolism , Humans , Iron-Sulfur Proteins/metabolism , Proteolysis , HEK293 Cells , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism
4.
Nat Commun ; 14(1): 6897, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898605

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are endoplasmic reticulum Ca2+ channels whose biphasic dependence on cytosolic Ca2+ gives rise to Ca2+ oscillations that regulate fertilization, cell division and cell death. Despite the critical roles of IP3R-mediated Ca2+ responses, the structural underpinnings of the biphasic Ca2+ dependence that underlies Ca2+ oscillations are incompletely understood. Here, we collect cryo-EM images of an IP3R with Ca2+ concentrations spanning five orders of magnitude. Unbiased image analysis reveals that Ca2+ binding does not explicitly induce conformational changes but rather biases a complex conformational landscape consisting of resting, preactivated, activated, and inhibited states. Using particle counts as a proxy for relative conformational free energy, we demonstrate that Ca2+ binding at a high-affinity site allows IP3Rs to activate by escaping a low-energy resting state through an ensemble of preactivated states. At high Ca2+ concentrations, IP3Rs preferentially enter an inhibited state stabilized by a second, low-affinity Ca2+ binding site. Together, these studies provide a mechanistic basis for the biphasic Ca2+-dependence of IP3R channel activity.


Subject(s)
Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Molecular Conformation , Endoplasmic Reticulum/metabolism , Protein Domains , Calcium/metabolism , Calcium Signaling
5.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808796

ABSTRACT

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the importance of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here, we show that FLVCR1, whose mutation leads to the neurodegenerative syndrome PCARP7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprised of aromatic and polar residues. Despite binding to a common site, the larger quaternary amine of choline interacts differently with FLVCR1 than does the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are critical for the transport of ethanolamine, while being dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLCVR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.

6.
Cell Metab ; 35(6): 1057-1071.e12, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37100056

ABSTRACT

Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.


Subject(s)
Genome-Wide Association Study , Receptors, Virus , Humans , Animals , Mice , Receptors, Virus/metabolism , Mutation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mammals/metabolism , Choline
7.
Nat Commun ; 13(1): 7373, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450733

ABSTRACT

The plasma membrane's main constituents, i.e., phospholipids and membrane proteins, are known to be organized in lipid-protein functional domains and supercomplexes. No active membrane-intrinsic process is known to establish membrane organization. Thus, the interplay of thermal fluctuations and the biophysical determinants of membrane-mediated protein interactions must be considered to understand membrane protein organization. Here, we used high-speed atomic force microscopy and kinetic and membrane elastic theory to investigate the behavior of a model membrane protein in oligomerization and assembly in controlled lipid environments. We find that membrane hydrophobic mismatch modulates oligomerization and assembly energetics, and 2D organization. Our experimental and theoretical frameworks reveal how membrane organization can emerge from Brownian diffusion and a minimal set of physical properties of the membrane constituents.


Subject(s)
Membrane Proteins , Phospholipids , Membranes , Biophysics , Protein Domains
8.
Proc Natl Acad Sci U S A ; 119(44): e2208882119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279431

ABSTRACT

Transmembrane protein 175 (TMEM175) is an evolutionarily distinct lysosomal cation channel whose mutation is associated with the development of Parkinson's disease. Here, we present a cryoelectron microscopy structure and molecular simulations of TMEM175 bound to 4-aminopyridine (4-AP), the only known small-molecule inhibitor of TMEM175 and a broad K+ channel inhibitor, as well as a drug approved by the Food and Drug Administration against multiple sclerosis. The structure shows that 4-AP, whose mode of action had not been previously visualized, binds near the center of the ion conduction pathway, in the open state of the channel. Molecular dynamics simulations reveal that this binding site is near the middle of the transmembrane potential gradient, providing a rationale for the voltage-dependent dissociation of 4-AP from TMEM175. Interestingly, bound 4-AP rapidly switches between three predominant binding poses, stabilized by alternate interaction patterns dictated by the twofold symmetry of the channel. Despite this highly dynamic binding mode, bound 4-AP prevents not only ion permeation but also water flow. Together, these studies provide a framework for the rational design of novel small-molecule inhibitors of TMEM175 that might reveal the role of this channel in human lysosomal physiology both in health and disease.


Subject(s)
4-Aminopyridine , Potassium Channels , Humans , 4-Aminopyridine/pharmacology , Potassium Channels/metabolism , Cryoelectron Microscopy , Lysosomes/metabolism , Water/metabolism
9.
Elife ; 112022 08 08.
Article in English | MEDLINE | ID: mdl-35939393

ABSTRACT

The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.


Subject(s)
DNA , Saccharomyces cerevisiae Proteins , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA Replication , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Conformation , Replication Protein C/chemistry , Replication Protein C/genetics , Replication Protein C/metabolism , Saccharomyces cerevisiae Proteins/metabolism
10.
Nat Commun ; 13(1): 4095, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835792

ABSTRACT

G-protein-coupled receptors (GPCRs) receive signals from ligands with different efficacies, and transduce to heterotrimeric G-proteins to generate different degrees of physiological responses. Previous studies revealed how ligands with different efficacies activate GPCRs. Here, we investigate how a GPCR activates G-proteins upon binding ligands with different efficacies. We report the cryo-EM structures of ß1-adrenergic receptor (ß1-AR) in complex with Gs (GαsGß1Gγ2) and a partial agonist or a very weak partial agonist, and compare them to the ß1-AR-Gs structure in complex with a full agonist. Analyses reveal similar overall complex architecture, with local conformational differences. Cellular functional studies with mutations of ß1-AR residues show effects on the cellular signaling from ß1-AR to the cAMP response initiated by the three different ligands, with residue-specific functional differences. Biochemical investigations uncover that the intermediate state complex comprising ß1-AR and nucleotide-free Gs is more stable when binding a full agonist than a partial agonist. Molecular dynamics simulations support the local conformational flexibilities and different stabilities among the three complexes. These data provide insights into the ligand efficacy in the activation of GPCRs and G-proteins.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Receptors, G-Protein-Coupled , Heterotrimeric GTP-Binding Proteins/metabolism , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/metabolism
11.
Elife ; 112022 05 24.
Article in English | MEDLINE | ID: mdl-35608336

ABSTRACT

Structures of the human lysosomal K+ channel transmembrane protein 175 (TMEM175) in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is permeable to K+ and, to a lesser degree, also Na+. Both cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.


Subject(s)
Dehydration , Potassium Channels , Humans , Ions/metabolism , Lysosomes/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium Channels/metabolism , Protein Conformation , Sodium/metabolism
12.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35447082

ABSTRACT

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Cryoelectron Microscopy , DNA/metabolism , Dimerization , Humans , Male , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcriptional Activation
13.
Nat Struct Mol Biol ; 29(4): 369-375, 2022 04.
Article in English | MEDLINE | ID: mdl-35314831

ABSTRACT

Single-stranded or double-stranded DNA junctions with recessed 5' ends serve as loading sites for the checkpoint clamp, 9-1-1, which mediates activation of the apical checkpoint kinase, ATRMec1. However, the basis for 9-1-1's recruitment to 5' junctions is unclear. Here, we present structures of the yeast checkpoint clamp loader, Rad24-replication factor C (RFC), in complex with 9-1-1 and a 5' junction and in a post-ATP-hydrolysis state. Unexpectedly, 9-1-1 adopts both closed and planar open states in the presence of Rad24-RFC and DNA. Moreover, Rad24-RFC associates with the DNA junction in the opposite orientation of processivity clamp loaders with Rad24 exclusively coordinating the double-stranded region. ATP hydrolysis stimulates conformational changes in Rad24-RFC, leading to disengagement of DNA-loaded 9-1-1. Together, these structures explain 9-1-1's recruitment to 5' junctions and reveal new principles of sliding clamp loading.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Adenosine Triphosphate , Cell Cycle Proteins , DNA/chemistry , DNA Replication , Intracellular Signaling Peptides and Proteins , Replication Protein C/genetics , Replication Protein C/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
14.
Sci Adv ; 8(9): eabl5508, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35245129

ABSTRACT

ATP7A and ATP7B, two homologous copper-transporting P1B-type ATPases, play crucial roles in cellular copper homeostasis, and mutations cause Menkes and Wilson diseases, respectively. ATP7A/B contains a P-type ATPase core consisting of a membrane transport domain and three cytoplasmic domains, the A, P, and N domains, and a unique amino terminus comprising six consecutive metal-binding domains. Here, we present a cryo-electron microscopy structure of frog ATP7B in a copper-free state. Interacting with both the A and P domains, the metal-binding domains are poised to exert copper-dependent regulation of ATP hydrolysis coupled to transmembrane copper transport. A ring of negatively charged residues lines the cytoplasmic copper entrance that is presumably gated by a conserved basic residue sitting at the center. Within the membrane, a network of copper-coordinating ligands delineates a stepwise copper transport pathway. This work provides the first glimpse into the structure and function of ATP7 proteins and facilitates understanding of disease mechanisms and development of rational therapies.

15.
Nat Commun ; 13(1): 731, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136060

ABSTRACT

Lysophospholipids are bioactive lipids and can signal through G-protein-coupled receptors (GPCRs). The best studied lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). The mechanisms of lysophospholipid recognition by an active GPCR, and the activations of lysophospholipid GPCR-G-protein complexes remain unclear. Here we report single-particle cryo-EM structures of human S1P receptor 1 (S1P1) and heterotrimeric Gi complexes formed with bound S1P or the multiple sclerosis (MS) treatment drug Siponimod, as well as human LPA receptor 1 (LPA1) and Gi complexes in the presence of LPA. Our structural and functional data provide insights into how LPA and S1P adopt different conformations to interact with their cognate GPCRs, the selectivity of the homologous lipid GPCRs for S1P versus LPA, and the different activation mechanisms of these GPCRs by LPA and S1P. Our studies also reveal specific optimization strategies to improve the MS-treating S1P1-targeting drugs.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Azetidines/pharmacology , Azetidines/therapeutic use , Benzyl Compounds/pharmacology , Benzyl Compounds/therapeutic use , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/isolation & purification , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Humans , Lysophospholipids/metabolism , Molecular Conformation/drug effects , Molecular Docking Simulation , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/isolation & purification , Receptors, Lysophosphatidic Acid/ultrastructure , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Sf9 Cells , Single Molecule Imaging , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/isolation & purification , Sphingosine-1-Phosphate Receptors/ultrastructure , Spodoptera
16.
Nat Struct Mol Biol ; 28(11): 936-944, 2021 11.
Article in English | MEDLINE | ID: mdl-34759376

ABSTRACT

The ß1-adrenergic receptor (ß1-AR) can activate two families of G proteins. When coupled to Gs, ß1-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey ß1-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins. We find that, although the critical receptor-interacting C-terminal α5-helices on Gαi and Gαs interact similarly with ß1-AR, the overall interacting modes between ß1-AR and G proteins vary substantially. Functional studies reveal the importance of the differing interactions and provide evidence that the activation efficacy of G proteins by ß1-AR is determined by the entire three-dimensional interaction surface, including intracellular loops 2 and 4 (ICL2 and ICL4).


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Protein Structure, Tertiary/physiology , Receptors, Adrenergic, beta-1/metabolism , Animals , Cardiac Output/genetics , Cardiac Output/physiology , Cell Line , Cryoelectron Microscopy , Cyclic AMP/metabolism , Enzyme Activation/physiology , HEK293 Cells , Heart Diseases/pathology , Humans , Hypertension/pathology , Isoproterenol/chemistry , Protein Structure, Secondary/physiology , Sf9 Cells , Signal Transduction/physiology
17.
Nature ; 599(7883): 136-140, 2021 11.
Article in English | MEDLINE | ID: mdl-34707288

ABSTRACT

Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.


Subject(s)
Glutathione/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Biological Transport , Cell Proliferation , Cells, Cultured , Erythropoiesis , Glutathione/deficiency , Homeostasis , Humans , Iron-Sulfur Proteins/metabolism , Mice , Mitochondrial Membrane Transport Proteins/genetics , Oxidation-Reduction , Proteome , Proteomics
18.
Elife ; 92020 08 04.
Article in English | MEDLINE | ID: mdl-32749217

ABSTRACT

The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a ß-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.


Inside the cells of mammals, acidic compartments called lysosomes are responsible for breaking down large molecules and worn-out cells parts so their components can be used again. Similar to lysosomes, specialized cells called osteoclasts require an acidic environment to degrade tissues in the bone. Both osteoclasts and lysosomes rely on a two-component protein complex to help them digest molecules. Mutations in the genes for both proteins are directly linked to human diseases including neurodegeneration and osteopetrosis ­ a disease characterized by dense and brittle bones. For the main protein in this complex, called CLC-7, to remain stable and perform its roles, it requires an accessory subunit known as OSTM1. CLC-7 is a transporter that funnels electrically charged particles into and out of the lysosome, which helps to maintain the environment inside the lysosome compartment. However, due to the tight partnership between CLC-7 and OTSM1, how they influence each other is poorly understood. To determine the roles of CLC-7 and OSTM1, Schrecker et al. looked at the structure of the complex using a technique called single particle electron microscopy, which allows proteins to be visualized almost down to the individual atom. The analysis revealed that OSTM1 covers almost the entire inside surface of CLC-7, protecting it from the acidic environment inside the lysosome and contributing to its stability. When the two subunits are bound together, OSTM1 also slightly changes the structure of the pore formed by CLC-7, suggesting that OSTM1 may regulate CLC-7 activity. Schrecker et al. have laid the foundation for understanding more about the activity and regulation of CLC-7 and OSTM1 in lysosomes and osteoclasts. The structures described also help explain previous findings, including why OSTM1 is important for the stability of CLC-7.


Subject(s)
Chloride Channels , Lysosomes/metabolism , Membrane Proteins , Ubiquitin-Protein Ligases , Animals , Chickens , Chloride Channels/chemistry , Chloride Channels/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure
19.
Mol Cell ; 80(1): 59-71.e4, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32818430

ABSTRACT

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The ß1-adrenergic receptor (ß1-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by ß1-ARs, leading to increased heart rate and contractility. Here, we use cryo-electron microscopy and functional studies to investigate the molecular mechanism by which ß1-AR activates Gs. We find that the tilting of α5-helix breaks a hydrogen bond between the sidechain of His373 in the C-terminal α5-helix and the backbone carbonyl of Arg38 in the N-terminal αN-helix of Gαs. Together with the disruption of another interacting network involving Gln59 in the α1-helix, Ala352 in the ß6-α5 loop, and Thr355 in the α5-helix, these conformational changes might lead to the deformation of the GDP-binding pocket. Our data provide molecular insights into the activation of G-proteins by G-protein-coupled receptors.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Isoproterenol/metabolism , Receptors, Adrenergic, beta-1/chemistry , Receptors, Adrenergic, beta-1/metabolism , Animals , Binding Sites , Cattle , Cell Line , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary
20.
Elife ; 92020 03 31.
Article in English | MEDLINE | ID: mdl-32228865

ABSTRACT

Transmembrane protein 175 (TMEM175) is a K+-selective ion channel expressed in lysosomal membranes, where it establishes a membrane potential essential for lysosomal function and its dysregulation is associated with the development of Parkinson's Disease. TMEM175 is evolutionarily distinct from all known channels, predicting novel ion-selectivity and gating mechanisms. Here we present cryo-EM structures of human TMEM175 in open and closed conformations, enabled by resolutions up to 2.6 Å. Human TMEM175 adopts a homodimeric architecture with a central ion-conduction pore lined by the side chains of the pore-lining helices. Conserved isoleucine residues in the center of the pore serve as the gate in the closed conformation. In the widened channel in the open conformation, these same residues establish a constriction essential for K+ selectivity. These studies reveal the mechanisms of permeation, selectivity and gating and lay the groundwork for understanding the role of TMEM175 in lysosomal function.


Subject(s)
Ion Channel Gating , Lysosomes/metabolism , Potassium Channels/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Membrane Potentials , Potassium Channels/ultrastructure , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL