Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126706

ABSTRACT

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Subject(s)
Geranyltranstransferase , Rosa , Geranyltranstransferase/genetics , Mevalonic Acid/metabolism , Rosa/metabolism , Cytosol/metabolism , Phylogeny , Terpenes/metabolism , Flowers/metabolism
2.
J Exp Bot ; 73(2): 555-570, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34129033

ABSTRACT

Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.


Subject(s)
Aphids , Pistacia , Animals , Plant Tumors , Terpenes , Up-Regulation
3.
Plant Sci ; 296: 110504, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32540020

ABSTRACT

Monoterpenes contribute either favorably or adversely to the flavor of tomato, yet modern tomato varieties generally lack monoterpenes in their fruit. The main immediate biosynthetic precursor of monoterpenes is geranyldiphosphate (GPP), produced by the action of GPP synthases (GPPSs). Plant GPPSs are often heteromeric enzymes consisting of a non-catalytic small subunit (GPPS.SSU) and a large subunit (GPPS.LSU), the latter similar to geranylgeranyldiphosphate synthases (GGPPSs) which generate longer prenylphosphate chains. We show here that LeGGPPS2, an enzyme previously reported to support carotenoid biosynthesis, can synthesize farnesyldiphosphate (FPP) and GPP in vitro, in addition to geranylgeranyldiphosphate, depending on the assay conditions. Moreover, GPP formation is favored in vitro by the interaction of LeGGPPS2 with GPPS.SSU from either Anthirrhinum majus (AmGPPS.SSU) or from a newly discovered GPPS.SSU ortholog present in the genome of M82 tomato. SlGPPS.SSU is not expressed in M82 tomato fruit but its orthologs are expressed in fruit of wild tomato relatives, such as Solanum pimpinelifollium and S. cheesmaniae that accumulate monoterpenes.


Subject(s)
Dimethylallyltranstransferase/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Fruit/metabolism , Solanum lycopersicum/metabolism , Catalysis , Dimethylallyltranstransferase/genetics , Fruit/enzymology , Gas Chromatography-Mass Spectrometry , Genes, Plant/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Phylogeny , Polyisoprenyl Phosphates/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...