Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 1): 118776, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38531505

ABSTRACT

Previous studies have suggested that living close to green spaces has protective health effects, but potential effects on asthma are contradictory. We investigated the association between the amount of greenness in the residential area during pregnancy and early life and development of asthma in the first 27 years of life. The study population included all 2568 members of the Espoo Cohort Study, Finland. We calculated individual-level exposure to green space measured as cumulative Normalized Difference Vegetation Index (cumNDVI in unit-months) within 300 m of the participant's residence during pregnancy and the first two years of life in both spring and summer seasons. The onset of asthma was assessed using information from the baseline and follow-up surveys. Exposure to residential greenness in the spring season during pregnancy was associated with an increased risk of asthma up to 6 years of age, with an adjusted hazard ratio (aHR) of 3.72 (95% confidence interval (CI): 1.11, 12.47) per 1 unit increase in cumNDVI. Increased greenness in the summer during pregnancy associated with asthma up to 6 years, with an aHR of 1.41 (95% CI: 0.85, 2.32). The effect was found to be related to increased greenness particularly during the third trimester of pregnancy, with an aHR of 2.37 (95% CI: 1.36, 4.14) per 1 unit increase of cumNDVI. These associations were weaker at the ages of 12 and 27 years. No association was found between NDVI in the first two years of life and the development of asthma. Our findings provide novel evidence that exposure to greenness during pregnancy increases the risk of developing asthma. The adverse effects were strongest for the prenatal greenness in the spring season and in the third trimester of pregnancy. Both the season and trimester of exposure to greenness are critical in the development of asthma.

2.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342212

ABSTRACT

Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area. We applied this approach to geofeature data from three areas in Finland. Our results showed that patterns of geodiversity uniqueness varied profoundly among the three study areas and across sites within each area. This was due to different sets of geofeatures and distinct characteristics of each study area. More importantly, the approach presented here was robust across the datasets and selection criteria for sets of sites, showing potential for geoconservation in each study area. The geodiversity uniqueness approach is a promising starting point to identify and map sites with unique geodiversity that can be further verified using field observations. To improve our knowledge of geodiversity variation, complementary approaches providing objective information on contributions to total beta geodiversity are needed to advance geoconservation programmes across areas and different spatial scales. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.

3.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342208

ABSTRACT

Rapid environmental change, natural resource overconsumption and increasing concerns about ecological sustainability have led to the development of 'Essential Variables' (EVs). EVs are harmonized data products to inform policy and to enable effective management of natural resources by monitoring global changes. Recent years have seen the instigation of new EVs beyond those established for climate, oceans and biodiversity (ECVs, EOVs and EBVs), including Essential Geodiversity Variables (EGVs). EGVs aim to consistently quantify and monitor heterogeneity of Earth-surface and subsurface abiotic features, including geology, geomorphology, hydrology and pedology. Here we assess the status and future development of EGVs to better incorporate geodiversity into policy and sustainable management of natural resources. Getting EGVs operational requires better consensus on defining geodiversity, investments into a governance structure and open platform for curating the development of EGVs, advances in harmonizing in situ measurements and linking heterogeneous databases, and development of open and accessible computational workflows for global digital mapping using machine-learning techniques. Cross-disciplinary collaboration and partnerships with governmental and private organizations are needed to ensure the successful development and uptake of EGVs across science and policy. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.


Subject(s)
Biodiversity , Conservation of Natural Resources , Climate
4.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230060, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342205

ABSTRACT

Geodiversity is a topical concept in earth and environmental sciences. Geodiversity information is needed to conserve nature, use ecosystem services and achieve sustainable development goals. Despite the increasing demand for geodiversity data, there exists no comprehensive system for categorizing geodiversity. Here, we present a hierarchically structured taxonomy that is potentially applicable in mapping and quantifying geodiversity across different regions, environments and scales. In this taxonomy, the main components of geodiversity are geology, geomorphology, hydrology and pedology. We propose a six-level hierarchical system where the components of geodiversity are classified at progressively lower taxonomic levels based on their genesis, physical-chemical properties and morphology. This comprehensive taxonomy can be used to compile geodiversity information for scientific research and various applications of value to society and nature conservation. Ultimately, this hierarchical system is the first step towards developing a global geodiversity taxonomy. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.

5.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342220

ABSTRACT

Geoconservation and related quantitative and qualitative geodiversity assessments are gaining increasing attention. However, methodologies for measuring geodiversity at local scale are currently rare. Here, we present a framework for assessing local-scale geodiversity of different landforms using field-based and digital elevation model (DEM-) derived data from the Rokua UNESCO Global Geopark in Finland. We observed the presence or absence of various geodiversity elements, such as geological or topographical elements in our study sites, and used these data to quantify alpha (α), gamma (γ) and beta (ß) geodiversity of various landforms. In addition, we measured topographical heterogeneity in the field and from DEMs. The results showed distinct patterns in the geodiversity and topographical variation of the landforms. The differences between α, γ and ß geodiversity of different landforms were particularly clear. According to the results, measures of topographical variability can be used to some extent as surrogates for geodiversity, but the choice of optimal variables is context and scale dependent. These results provide perspectives for further local-scale geodiversity assessments in different study areas and are applicable for a range of purposes, from scientific research to practical management and geoconservation. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.

6.
J Environ Manage ; 351: 119666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048706

ABSTRACT

Chen et al. (2023) have proposed a scheme to define which services should be included as ecosystem services and which should be excluded so as to avoid "an all-encompassing metaphor that captures any benefit". We discuss the proposals, drawing attention in particular to definitions of 'natural capital' and 'ecosystems', the complexities of separating biotic from abiotic flows, and the importance of geodiversity and geosystem services in delivering societal benefits. We conclude that rather than trying to separate out bits of nature in order to draw the boundary of ecosystem services, it is perhaps time to avoid using 'nature' and 'biodiversity' as synonyms and think instead of a more holistic and integrated approach involving 'environmental', 'natural' or 'nature's services', in which the role of abiotic nature is fully recognised in both ecosystem services and non-ecosystem domains.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity
7.
Trends Ecol Evol ; 38(8): 736-748, 2023 08.
Article in English | MEDLINE | ID: mdl-37003934

ABSTRACT

Geodiversity - the abiotic heterogeneity of Earth's (sub)surface - is gaining recognition for its ecological links to biodiversity. However, theoretical and conceptual knowledge of geodiversity-trait diversity relationships is currently lacking and can improve understanding of abiotic drivers of community assembly. Here we synthesise the state of knowledge of these relationships. We find that some components of geodiversity (e.g., topographic heterogeneity) elicit strong trait responses, whereas other components (e.g., substrate heterogeneity) have marginal effects in driving trait distributions. However, current knowledge is lacking in key aspects, including geodiversity's effect on trait-specific diversity and intraspecific variation. We call for the explicit inclusion of geodiversity when relating environmental drivers to trait diversity, taking advantage of the increasing availability of trait and geodiversity data.


Subject(s)
Biodiversity , Phenotype
8.
Lancet Planet Health ; 6(12): e987-e992, 2022 12.
Article in English | MEDLINE | ID: mdl-36495893

ABSTRACT

Our existence on Earth is founded on a vital nature, which supports human physical and mental health. However, nature is often depicted only through biodiversity, whereas geodiversity-the diversity of non-living nature-has so far been neglected. Geodiversity consists of assemblages, structures, and systems of geological, geomorphological, soil, and hydrological components that fundamentally underlie biodiversity. Biodiversity can support overall human health only with the foundation of geodiversity. Landscape characteristics, such as varying topography or bodies of water, promote aesthetic and sensory experiences and are also a product of geodiversity. In this Personal View, we introduce the concept of geodiversity as a driver for planetary health, describe its functions and services, and outline the intricate relationships between geodiversity, biodiversity, and human health. We also propose an agenda for acknowledging the importance of geodiversity in health-related research and decision making. Geodiversity is an emerging topic with untapped potential for ensuring ecosystem functionality and good living conditions for people in a time of changing environments.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Biodiversity , Earth, Planet
10.
Oecologia ; 191(4): 919-929, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31624960

ABSTRACT

Recently, community ecology has emphasized the multi-facetted aspects of biological diversity by linking species traits and the environment. Here, we explored environmental correlates of taxonomically-based and traits-based compositional distances using a comprehensive data set of diatom and macroinvertebrate communities. We also explored the responses of different beta diversity components (i.e., overall beta diversity, turnover, and nestedness) of beta diversity facets (i.e., taxonomically and traits-based beta diversity) to environmental distances. Partial Mantel tests were used to test the relationships between beta diversity and environmental distance (while controlling for spatial distances). Taxonomically-based beta diversity varied much more than traits-based beta diversity, indicating strong functional convergence. We found that taxonomically-based beta diversity was largely driven by the turnover component. However, the nestedness component contributed more to overall traits-based beta diversity than the turnover component. Taxonomically-based beta diversity was significantly correlated with environmental distances for both diatoms and macroinvertebrates. Thus, we found support for the role of environmental filtering as a driver of community dissimilarities of rather different biological groups. However, the strength of these relationships between beta diversity and environmental distances varied depending on the biological group, facet, component, and the way which the environmental variables were selected to calculate the explanatory (distance) matrix. Our results indicated that both taxonomically and traits-based approaches are still needed to better understand patterns and mechanisms affecting the organization of biological communities in streams. This is because different facets of biological communities may be driven by different mechanisms.


Subject(s)
Diatoms , Rivers , Biodiversity , Ecology
12.
Sci Data ; 6: 190037, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30860499

ABSTRACT

Ongoing climate change is causing fundamental changes in the Arctic, some of which can be hazardous to nature and human activity. In the context of Earth surface systems, warming climate may lead to rising ground temperatures and thaw of permafrost. This Data Descriptor presents circumpolar permafrost maps and geohazard indices depicting zones of varying potential for development of hazards related to near-surface permafrost degradation, such as ground subsidence. Statistical models were used to predict ground temperature and the thickness of the seasonally thawed (active) layer using geospatial data on environmental conditions at 30 arc-second resolution. These predictions, together with data on factors (ground ice content, soil grain size and slope gradient) affecting permafrost stability, were used to formulate geohazard indices. Using climate-forcing scenarios (Representative Concentration Pathways 2.6, 4.5 and 8.5), permafrost extent and hazard potential were projected for the 2041-2060 and 2061-2080 time periods. The resulting data (seven permafrost and 24 geohazard maps) are relevant to near-future infrastructure risk assessments and for targeting localized geohazard analyses.

13.
Nat Commun ; 9(1): 5147, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30538247

ABSTRACT

Degradation of near-surface permafrost can pose a serious threat to the utilization of natural resources, and to the sustainable development of Arctic communities. Here we identify at unprecedentedly high spatial resolution infrastructure hazard areas in the Northern Hemisphere's permafrost regions under projected climatic changes and quantify fundamental engineering structures at risk by 2050. We show that nearly four million people and 70% of current infrastructure in the permafrost domain are in areas with high potential for thaw of near-surface permafrost. Our results demonstrate that one-third of pan-Arctic infrastructure and 45% of the hydrocarbon extraction fields in the Russian Arctic are in regions where thaw-related ground instability can cause severe damage to the built environment. Alarmingly, these figures are not reduced substantially even if the climate change targets of the Paris Agreement are reached.

14.
Oecologia ; 186(1): 205-216, 2018 01.
Article in English | MEDLINE | ID: mdl-29090405

ABSTRACT

The regional occupancy and local abundance of species are thought to be strongly correlated to their body size, niche breadth and niche position. The strength of the relationships among these variables can also differ between different organismal groups. Here, we analyzed data on stream diatoms and insects from a high-latitude drainage basin to investigate these relationships. To generate measures of niche position and niche breadth for each species, we used sets of local environmental and catchment variables separately, applying the outlying mean index analysis. Beta regression and negative binomial generalized linear models were run to predict regional occupancy and mean local abundance, respectively. We found a positive occupancy-abundance relationship in both diatoms and insects, and that niche-based variables were the main predictors of variation in regional occupancy and local abundance. This finding was mainly due to local environmental niche position, whereas the effects of niche breadth on regional occupancy and local abundance were less important. We also found a relationship between body size and local abundance or regional occupancy of diatoms. Our results thus add to current macroecological research by emphasizing the strong importance of niche position rather than niche breadth and body size for regional occupancy and local abundance in rarely studied organisms (e.g., diatoms and insects) and ecosystems (i.e., wilderness streams).


Subject(s)
Diatoms , Rivers , Animals , Body Size , Ecosystem , Insecta
15.
PLoS One ; 12(10): e0186348, 2017.
Article in English | MEDLINE | ID: mdl-29023565

ABSTRACT

Little is known about the levels of exposure to grass pollen in urban environments. We assessed the spatio-temporal variation of grass pollen concentrations and the role of urbanity as a determinant of grass pollen exposure in the Helsinki Metropolitan area. We monitored grass pollen concentrations in 2013 at 16 sites during the peak pollen season by using rotorod-type samplers at the breathing height. The sites were in the cities of Helsinki and Espoo, Finland, and formed city-specific lines that represented urban-rural gradient. The monitoring sites were both visually and based on land use data ranked as high to low (graded 1 to 8) pollen area. The lowest grass pollen concentrations were observed in the most urban sites compared to the least urban sites (mean 3.6 vs. 6.8 grains/m3 in Helsinki; P<0.0001, and 5.2 vs. 87.5 grains/m3 in Espoo; P<0.0001). Significant differences were observed between concentrations measured in morning periods compared to afternoon periods (4.9 vs. 5.4 in Helsinki, P = 0.0186, and 21.8 vs. 67.1 in Espoo, P = 0.0004). The mean pollen concentration increased with decreasing urbanity both in Helsinki (0.59 grains/m3 per urbanity rank, 95% CI 0.25-0.93) and Espoo (8.42, 6.23-10.61). Pollen concentrations were highest in the afternoons and they were related to the ambient temperature. Urbanity was a strong and significant determinant of pollen exposure in two Finnish cities. Pollen exposure can periodically reach such high levels even in the most urban environments that can cause allergic reactions among individuals with allergies.


Subject(s)
Poaceae/growth & development , Pollen/chemistry , Urbanization , Environmental Monitoring , Finland , Time Factors
16.
Oecologia ; 184(1): 219-235, 2017 05.
Article in English | MEDLINE | ID: mdl-28293743

ABSTRACT

Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.


Subject(s)
Ecology , Lakes , Altitude , Climate , Temperature
17.
Conserv Biol ; 31(2): 364-375, 2017 04.
Article in English | MEDLINE | ID: mdl-27476459

ABSTRACT

Understanding threatened species diversity is important for long-term conservation planning. Geodiversity-the diversity of Earth surface materials, forms, and processes-may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species' diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock-type and soil-type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity-weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1-km2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity-weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage is an important principle in conservation.


Subject(s)
Biodiversity , Conservation of Natural Resources , Endangered Species , Animals , Finland , Mammals
18.
Sci Total Environ ; 569-570: 507-517, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27362632

ABSTRACT

Fundamental knowledge on the determinants of air temperatures across spatial and temporal scales is essential in climate change mitigation and adaptation. Spatial-based statistical modelling provides an efficient approach for the analysis and prediction of air temperatures in human-modified environments at high spatial accuracy. The aim of the study was firstly, to analyse the environmental factors affecting extreme air temperature conditions in a coastal high-latitude city and secondly, to explore the applicability of generalized additive model (GAM) in the study of urban-rural temperatures. We utilized air temperature data from 50 permanent temperature logger stations and extensive geospatial environmental data on different scales from Turku, SW Finland. We selected five temperature situations (cases) and altogether 12 urban and natural explanatory variables for the analyses. The results displayed that (i) water bodies and topographical conditions were often more important than urban variables in controlling the spatial variability of extreme air temperatures, (ii) case specificity of the explanatory variables and their scales should be considered in the analyses and (iii) GAM was highly suitable in quantifying and visualizing the relations between urban-rural temperatures and environmental determinants at local scales. The results promote the use of GAMs in spatial-based statistical modelling of air temperature in future.

19.
Environ Health Perspect ; 124(5): 619-26, 2016 05.
Article in English | MEDLINE | ID: mdl-26452296

ABSTRACT

BACKGROUND: Despite the recent developments in physically and chemically based analysis of atmospheric particles, no models exist for resolving the spatial variability of pollen concentration at urban scale. OBJECTIVES: We developed a land use regression (LUR) approach for predicting spatial fine-scale allergenic pollen concentrations in the Helsinki metropolitan area, Finland, and evaluated the performance of the models against available empirical data. METHODS: We used grass pollen data monitored at 16 sites in an urban area during the peak pollen season and geospatial environmental data. The main statistical method was generalized linear model (GLM). RESULTS: GLM-based LURs explained 79% of the spatial variation in the grass pollen data based on all samples, and 47% of the variation when samples from two sites with very high concentrations were excluded. In model evaluation, prediction errors ranged from 6% to 26% of the observed range of grass pollen concentrations. Our findings support the use of geospatial data-based statistical models to predict the spatial variation of allergenic grass pollen concentrations at intra-urban scales. A remote sensing-based vegetation index was the strongest predictor of pollen concentrations for exposure assessments at local scales. CONCLUSIONS: The LUR approach provides new opportunities to estimate the relations between environmental determinants and allergenic pollen concentration in human-modified environments at fine spatial scales. This approach could potentially be applied to estimate retrospectively pollen concentrations to be used for long-term exposure assessments. CITATION: Hjort J, Hugg TT, Antikainen H, Rusanen J, Sofiev M, Kukkonen J, Jaakkola MS, Jaakkola JJ. 2016. Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environ Health Perspect 124:619-626; http://dx.doi.org/10.1289/ehp.1509761.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Allergens/analysis , Environmental Exposure/statistics & numerical data , Pollen , Finland , Models, Statistical , Particulate Matter/analysis , Seasons
20.
J Anim Ecol ; 84(5): 1342-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25981411

ABSTRACT

1. Metacommunity research relies largely on proxies for inferring the effect of dispersal on local community structure. Overland and watercourse distances have been typically used as such proxies. A good proxy for dispersal should, however, take into account more complex landscape features that can affect an organism's movement and dispersal. The cost distance approach does just that, allowing determining the path of least resistance across a landscape. 2. Here, we examined the distance decay of assemblage similarity within a subarctic stream insect metacommunity. We tested whether overland, watercourse and cumulative cost distances performed differently as correlates of dissimilarity in assemblage composition between sites. We also investigated the effect of body size and dispersal mode on metacommunity organization. 3. We found that dissimilarities in assemblage composition correlated more strongly with environmental than physical distances between sites. Overland and watercourse distances showed similar correlations to assemblage dissimilarity between sites, being sometimes significantly correlated with biological variation of entire insect communities. In metacommunities deconstructed by body size or dispersal mode, contrary to our expectation, passive dispersers showed a slightly stronger correlation than active dispersers to environmental differences between sites, although passive dispersers also showed a stronger correlation than active dispersers to physical distances between sites. The strength of correlation between environmental distance and biological dissimilarity also varied slightly among the body size classes. 4. After controlling for environmental differences between sites, cumulative cost distances were slightly better correlates of biological dissimilarities than overland or watercourse distances between sites. However, quantitative differences in correlation coefficients were small between different physical distances. 5. Although environmental differences typically override physical distances as determinants of the composition of stream insect assemblages, correlations between environmental distances and biological dissimilarities are typically rather weak. This undetermined variation may be attributable to dispersal processes, which may be captured using better proxies for the process. We suggest that further modifying the measurement of cost distances may be a fruitful avenue, especially if complemented by more direct natural history information on insect dispersal behaviour and distances travelled by them.


Subject(s)
Animal Distribution , Biodiversity , Insecta/physiology , Rivers , Animals , Energy Metabolism , Finland , Geography
SELECTION OF CITATIONS
SEARCH DETAIL
...