Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Mol Mutagen ; 51(6): 604-24, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20658650

ABSTRACT

Interstrand cross-links (ICLs) are among the most cytotoxic DNA lesions to cells because they prevent the two DNA strands from separating, thereby precluding replication and transcription. Even though chemotherapeutic cross-linking agents are well established in clinical use, and numerous repair proteins have been implicated in the initial events of mammalian ICL repair, the precise mechanistic details of these events remain to be elucidated. This review will summarize our current understanding of how ICL repair is initiated with an emphasis on the context (replicating, transcribed or quiescent DNA) in which the ICL is recognized, and how the chemical and physical properties of ICLs influence repair. Although most studies have focused on replication-dependent repair because of the relation to highly replicative tumor cells, replication-independent ICL repair is likely to be important in the circumvention of cross-link cytotoxicity in nondividing, terminally differentiated cells that may be challenged with exogenous or endogenous sources of ICLs. Consequently, the ICL repair pathway that should be considered "dominant" appears to depend on the cell type and the DNA context in which the ICL is encountered. The ability to define and inhibit distinct pathways of ICL repair in different cell cycle phases may help in developing methods that increase cytotoxicity to cancer cells while reducing side-effects in nondividing normal cells. This may also lead to a better understanding of pathways that protect against malignancy and aging.


Subject(s)
Cross-Linking Reagents/pharmacology , DNA Repair/drug effects , Animals , Cisplatin/pharmacology , Codon, Initiator , Humans , Mitomycin/pharmacology , Transcription, Genetic
2.
Biochemistry ; 49(18): 3977-88, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20373772

ABSTRACT

DNA interstrand cross-links (ICLs) are cytotoxic products of common anticancer drugs and cellular metabolic processes, whose mechanism(s) of repair remains poorly understood. In this study, we show that cross-link structure affects ICL repair in nonreplicating reporter plasmids that contain a mispaired N(4)C-ethyl-N(4)C (C-C), N3T-ethyl-N3T (T-T), or N1I-ethyl-N3T (I-T) ICL. The T-T and I-T cross-links obstruct the hydrogen bond face of the base and mimic the N1G-ethyl-N3C ICL created by bis-chloroethylnitrosourea, whereas the C-C cross-link does not interfere with base pair formation. Host-cell reactivation (HCR) assays in human and hamster cells showed that repair of these ICLs primarily involves the transcription-coupled nucleotide excision repair (TC-NER) pathway. Repair of the C-C ICL was 5-fold more efficient than repair of the T-T or I-T ICLs, suggesting the latter cross-links hinder lesion bypass following initial ICL unhooking. The level of luciferase expression from plasmids containing a C-C cross-link remnant on either the transcribed or nontranscribed strand increased in NER-deficient cells, indicating NER involvement occurs at a step prior to remnant removal, whereas expression from similar T-T remnant plasmids was inhibited in NER-deficient cells, demonstrating NER is required for remnant removal. Sequence analysis of repaired plasmids showed a high proportion of C residues inserted at the site of the T-T and I-T cross-links, and HCR assays showed that Rev1 was likely responsible for these insertions. In contrast, both C and G residues were inserted at the C-C cross-link site, and Rev1 was not required for repair, suggesting replicative or other translesion polymerases can bypass the C-C remnant.


Subject(s)
DNA Repair , DNA Replication , DNA/chemistry , Animals , Antineoplastic Combined Chemotherapy Protocols , Cricetinae , Cyclophosphamide , DNA/genetics , DNA Breaks, Double-Stranded , DNA Damage , Doxorubicin , HeLa Cells , Humans , Nucleic Acid Conformation , Recombination, Genetic , Vincristine
3.
Chem Res Toxicol ; 22(7): 1285-97, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19580249

ABSTRACT

DNA interstrand cross-links (ICLs) are products of chemotherapeutic agents and cellular metabolic processes that block both replication and transcription. If left unrepaired, ICLs are extremely toxic to cells, and ICL repair mechanisms contribute to the survival of certain chemotherapeutic resistance tumors. A critical step in ICL repair involves unhooking the cross-link. In the absence of a homologous donor sequence, the resulting gap can be filled in by a repair synthesis step involving bypass of the cross-link remnant. Here, we examine the effect of cross-link structure on the ability of unhooked DNA substrates to undergo repair synthesis in mammalian whole cell extracts. Using 32P incorporation assays, we found that repair synthesis occurs efficiently past the site of damage when a DNA substrate containing a single N4C-ethyl-N4C cross-link is incubated in HeLa or Chinese hamster ovary cell extracts. This lesion, which can base pair with deoxyguanosine, is readily bypassed by both Escherichia coli DNA polymerase I and T7 DNA polymerase in a primer extension assay. In contrast, bypass was not observed in the primer extension assay or in mammalian cell extracts when DNA substrates containing a N3T-ethyl-N3T or N1I-ethyl-N3T cross-link, whose linkers obstruct the hydrogen bond face of the bases, were used. A modified phosphorothioate sequencing method was used to analyze the ICL repair patches created in the mammalian cell extracts. In the case of the N4C-ethyl-N4C substrate, the repair patch spanned the site of the cross-link, and the lesion was bypassed in an error-free manner. However, although the N3T-ethyl-N3T and N1I-ethyl-N3T substrates were unhooked in the extracts, bypass was not detected. These and our previous results suggest that although the chemical structure of an ICL may not affect initial cross-link unhooking, it can play a significant role in subsequent processing of the cross-link. Understanding how the physical and chemical differences of ICLs affect repair may provide a better understanding of the cytotoxic and mutagenic potential of specific ICLs.


Subject(s)
Cross-Linking Reagents/chemistry , DNA Repair , DNA/chemistry , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , Cross-Linking Reagents/metabolism , DNA-Directed DNA Polymerase/metabolism , HeLa Cells , Humans , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/metabolism , Sequence Analysis, DNA
4.
Biochemistry ; 47(37): 9920-30, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18702509

ABSTRACT

Interstrand cross-links (ICLs) are formed by many chemotherapeutic agents and may also arise endogenously. The mechanisms used to repair these lesions remain unclear in mammalian cells. Repair in Escherichia coli and Saccharomyces cerevisiae requires an initial unhooking step to release the tethered DNA strands. We used a panel of linear substrates containing different site-specific ICLs to characterize how structure affects ICL processing in mammalian cell extracts. We demonstrate that ICL-induced distortions affect NER-dependent and -independent processing events. The NER-dependent pathway produces dual incisions 5' to the site of the ICL as described previously [Bessho, T., et al. (1997) Mol. Cell. Biol. 17 (12), 6822-6830] but does not release the cross-link. Surprisingly, we also found that the interstrand cross-linked duplexes were unhooked in mammalian cell extracts in a manner independent of the NER pathway. Unhooking occurred identically in extracts prepared from human and rodent cells and is dependent on ATP hydrolysis and metal ions. The structure of the unhooked product was characterized and was found to contain the remnant of the cross-link. Both the NER-mediated dual 5' incisions and unhooking reactions were greatly stimulated by ICL-induced distortions, including increased local flexibility and disruption of base pairs surrounding the site of the ICL. These results suggest that in DNA not undergoing transcription or replication, distortions induced by the presence of an ICL could contribute significantly to initial cross-link recognition and processing.


Subject(s)
Cross-Linking Reagents/pharmacology , DNA/chemistry , Animals , Cell Extracts , Cells, Cultured , Cricetinae , DNA/drug effects , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , HeLa Cells/drug effects , HeLa Cells/metabolism , Humans , Nucleic Acid Conformation
5.
IUBMB Life ; 56(7): 379-85, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15545214

ABSTRACT

The related disorders of obesity and diabetes are increasing to epidemic proportions. The role of neutral lipid storage and hydrolysis, and hence the adipocyte, is central to understanding this phenomenon. The adipocyte holds the major source of stored energy in the body in the form of triacylglycerols (TAG). It has been known for over 35 years that the breakdown of TAG and release of free (unesterified) fatty acids and glycerol from fat tissue can be regulated by a cAMP-mediated process. However, beyond the initial signaling cascade, the mechanistic details of this lipolytic reaction have remained unclear. Work in recent years has revealed that both hormone-sensitive lipase (HSL), generally thought to be the rate-limiting enzyme, and perilipin, a lipid droplet surface protein, are required for optimal lipid storage and fatty acid release. There are multiple perilipin proteins encoded by mRNA splice variants of a single perilipin gene. The perilipin proteins are polyphosphorylated by protein kinase A and phosphorylation is necessary for translocation of HSL to the lipid droplet and enhanced lipolysis. Hence, the surface of the lipid storage droplet has emerged as a central site of regulation of lipolysis. This review will focus on adipocyte lipolysis with emphasis on hormone signal transduction, lipolytic enzymes, the lipid storage droplet, and fatty acid release from the adipocyte.


Subject(s)
Adipocytes/physiology , Lipid Metabolism , Lipolysis/physiology , Phosphoproteins/metabolism , Signal Transduction/physiology , Adipocytes/metabolism , Alternative Splicing/genetics , Carrier Proteins , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Models, Biological , Perilipin-1 , Phosphoproteins/genetics , Phosphorylation , Protein Transport/physiology , Sterol Esterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL