Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 60, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409096

ABSTRACT

Assembled genome sequences are being generated at an exponential rate. Here we present FCS-GX, part of NCBI's Foreign Contamination Screen (FCS) tool suite, optimized to identify and remove contaminant sequences in new genomes. FCS-GX screens most genomes in 0.1-10 min. Testing FCS-GX on artificially fragmented genomes demonstrates high sensitivity and specificity for diverse contaminant species. We used FCS-GX to screen 1.6 million GenBank assemblies and identified 36.8 Gbp of contamination, comprising 0.16% of total bases, with half from 161 assemblies. We updated assemblies in NCBI RefSeq to reduce detected contamination to 0.01% of bases. FCS-GX is available at https://github.com/ncbi/fcs/ or https://doi.org/10.5281/zenodo.10651084 .


Subject(s)
Databases, Nucleic Acid , Genome , Software
2.
bioRxiv ; 2023 06 06.
Article in English | MEDLINE | ID: mdl-37292984

ABSTRACT

Assembled genome sequences are being generated at an exponential rate. Here we present FCS-GX, part of NCBI's Foreign Contamination Screen (FCS) tool suite, optimized to identify and remove contaminant sequences in new genomes. FCS-GX screens most genomes in 0.1-10 minutes. Testing FCS-GX on artificially fragmented genomes demonstrates sensitivity >95% for diverse contaminant species and specificity >99.93%. We used FCS-GX to screen 1.6 million GenBank assemblies and identified 36.8 Gbp of contamination (0.16% of total bases), with half from 161 assemblies. We updated assemblies in NCBI RefSeq to reduce detected contamination to 0.01% of bases. FCS-GX is available at https://github.com/ncbi/fcs/.

3.
Nucleic Acids Res ; 44(D1): D733-45, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26553804

ABSTRACT

The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.


Subject(s)
Databases, Genetic , Genomics , Animals , Cattle , Gene Expression Profiling , Genome, Fungal , Genome, Human , Genome, Microbial , Genome, Plant , Genome, Viral , Genomics/standards , Humans , Invertebrates/genetics , Mice , Molecular Sequence Annotation , Nematoda/genetics , Phylogeny , RNA, Long Noncoding/genetics , Rats , Reference Standards , Sequence Analysis, Protein , Sequence Analysis, RNA , Vertebrates/genetics
4.
PLoS Biol ; 7(5): e1000112, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19468303

ABSTRACT

The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.


Subject(s)
Computational Biology/methods , Genome/genetics , Animals , Databases, Genetic , Gene Duplication , Genome/physiology , Humans , Mice
5.
Science ; 324(5926): 522-8, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19390049

ABSTRACT

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.


Subject(s)
Biological Evolution , Genome , Alternative Splicing , Animals , Animals, Domestic , Cattle , Evolution, Molecular , Female , Genetic Variation , Humans , Male , MicroRNAs/genetics , Molecular Sequence Data , Proteins/genetics , Sequence Analysis, DNA , Species Specificity , Synteny
6.
Science ; 314(5801): 941-52, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17095691

ABSTRACT

We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.


Subject(s)
Genome , Sequence Analysis, DNA , Strongylocentrotus purpuratus/genetics , Animals , Calcification, Physiologic , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/physiology , Complement Activation/genetics , Computational Biology , Embryonic Development/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Genes , Immunity, Innate/genetics , Immunologic Factors/genetics , Immunologic Factors/physiology , Male , Nervous System Physiological Phenomena , Proteins/genetics , Proteins/physiology , Signal Transduction , Strongylocentrotus purpuratus/embryology , Strongylocentrotus purpuratus/immunology , Strongylocentrotus purpuratus/physiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...