Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Res ; 261: 41-56, 2023 11.
Article in English | MEDLINE | ID: mdl-37419277

ABSTRACT

Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Child , Animals , Humans , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , AMP-Activated Protein Kinases , Phenotype , Disease Models, Animal , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology
2.
Sci Rep ; 11(1): 7586, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828194

ABSTRACT

Myopia results from an excessive axial growth of the eye, causing abnormal projection of remote images in front of the retina. Without adequate interventions, myopia is forecasted to affect 50% of the world population by 2050. Exposure to outdoor light plays a critical role in preventing myopia in children, possibly through the brightness and blue-shifted spectral composition of sunlight, which lacks in artificial indoor lighting. Here, we evaluated the impact of moderate levels of ambient standard white (SW: 233.1 lux, 3900 K) and blue-enriched white (BEW: 223.8 lux, 9700 K) lights on ocular growth and metabolomics in a chicken-model of form-deprivation myopia. Compared to SW light, BEW light decreased aberrant ocular axial elongation and accelerated recovery from form-deprivation. Furthermore, the metabolomic profiles in the vitreous and retinas of recovering form-deprived eyes were distinct from control eyes and were dependent on the spectral content of ambient light. For instance, exposure to BEW light was associated with deep lipid remodeling and metabolic changes related to energy production, cell proliferation, collagen turnover and nitric oxide metabolism. This study provides new insight on light-dependent modulations in ocular growth and metabolomics. If replicable in humans, our findings open new potential avenues for spectrally-tailored light-therapy strategies for myopia.


Subject(s)
Myopia/prevention & control , Retina/radiation effects , Vitreous Body/metabolism , Animals , Axial Length, Eye/growth & development , Chickens , Disease Models, Animal , Eye/growth & development , Eye/radiation effects , Hyperopia/physiopathology , Light , Lighting/methods , Metabolomics , Myopia/metabolism , Myopia/radiotherapy , Phototherapy/methods , Refraction, Ocular , Retina/pathology , Sunlight , Vision, Ocular , Vitreous Body/pathology
3.
Invest Ophthalmol Vis Sci ; 62(3): 25, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33729474

ABSTRACT

Purpose: To determine the tomographic, angiographic, and histologic changes in the choroid and retina of cynomolgus monkeys after systemic adrenaline and verteporfin photodynamic therapy (vPDT). Methods: Six cynomolgus monkeys (12 eyes) were treated with vPDT only (n = 2), adrenaline only for eight weeks (n = 2), adrenaline for eight weeks with vPDT at week 4 (n = 4), and adrenaline for 12 weeks and vPDT at week 8 (n = 4). Spectral-domain optical coherence tomography, angiography, and autofluorescence were performed at baseline and every 14 days thereafter until 28 days after adrenaline therapy or vPDT. Choroid parameters included choroidal thickness (CT) changes and structural changes using semiautomated image binarization. Histology with light and electron microscopy was performed. Results: Adrenaline resulted in subfoveal CT increase at week 4 compared with baseline (3.4%, P = 0.010), with further increase at week 8 (3.9%, P = 0.007). This correlated with choroidal luminal area increase (16.0% at week 8 compared with baseline, P = 0.030). Outer retinal changes included subretinal fluid, ellipsoid zone (EZ) disruption, photoreceptor elongation, and sub/intraretinal bright dots. Hypocyanescent spots surrounded by leakage was observed. Histology showed dilated choroidal vessels, intracytoplasmic vacuoles, and retinal pigment epithelium (RPE) enlarged basal infoldings. The vPDT decreased subfoveal CT at four weeks after vPDT (-7.5%, P = 0.007). This correlated with choroidal stromal area decrease (-18.0%, P < 0.010). Within the treatment spot, there was outer retinal atrophy, EZ disruption, irregular RPE thickening, intense hypoautofluorescence, hyperfluorescence, and hypocyanescence. On histology, there were outer retina, RPE, and choroid changes. Conclusions: Adrenaline induces choroidal vessel dilation and CT increase. The vPDT decreases CT because of a reduction in choroidal stromal component.


Subject(s)
Central Serous Chorioretinopathy/chemically induced , Choroid/drug effects , Epinephrine/adverse effects , Mydriatics/adverse effects , Photochemotherapy/adverse effects , Retina/drug effects , Animals , Central Serous Chorioretinopathy/diagnostic imaging , Choroid/diagnostic imaging , Coloring Agents/administration & dosage , Combined Modality Therapy , Epinephrine/administration & dosage , Fluorescein Angiography , Indocyanine Green/administration & dosage , Macaca fascicularis , Male , Mydriatics/administration & dosage , Photosensitizing Agents/adverse effects , Retina/diagnostic imaging , Tomography, Optical Coherence , Verteporfin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...