Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Circ Genom Precis Med ; : e004580, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910555

ABSTRACT

Genetic hypertrophic cardiomyopathy (HCM) is classically caused by pathogenic/likely pathogenic variants in sarcomere genes (G+). Currently, HCM is diagnosed if there is unexplained left ventricular (LV) hypertrophy with LV wall thickness ≥15 mm in probands or ≥13 mm in at-risk relatives. Although LV hypertrophy is a key feature, this binary metric does not encompass the full constellation of phenotypic features, particularly in the subclinical stage of the disease. Subtle phenotypic manifestations can be identified in sarcomere variant carriers with normal LV wall thickness, before diagnosis with HCM (G+/LV hypertrophy-; subclinical HCM). We conducted a systematic review to summarize current knowledge about the phenotypic spectrum of subclinical HCM and factors influencing penetrance and expressivity. Although the mechanisms driving the development of LV hypertrophy are yet to be elucidated, activation of profibrotic pathways, impaired relaxation, abnormal Ca2+ signaling, altered myocardial energetics, and microvascular dysfunction have all been identified in subclinical HCM. Progression from subclinical to clinically overt HCM may be more likely if early phenotypic manifestations are present, including abnormal ECG, longer mitral valve leaflets, lower global E' velocities on Doppler echocardiography, and higher serum N-terminal propeptide of B-type natriuretic peptide. Longitudinal studies of variant carriers are critically needed to improve our understanding of penetrance, characterize the transition to disease, identify risk predictors of phenotypic evolution, and guide the development of novel treatment strategies aimed at influencing disease trajectory.

2.
Circulation ; 149(23): e1239-e1311, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38718139

ABSTRACT

AIM: The "2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy" provides recommendations to guide clinicians in the management of patients with hypertrophic cardiomyopathy. METHODS: A comprehensive literature search was conducted from September 14, 2022, to November 22, 2022, encompassing studies, reviews, and other evidence on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through May 23, 2023, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE: Hypertrophic cardiomyopathy remains a common genetic heart disease reported in populations globally. Recommendations from the "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy" have been updated with new evidence to guide clinicians.


Subject(s)
American Heart Association , Cardiology , Cardiomyopathy, Hypertrophic , Humans , Cardiology/standards , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/diagnosis , Disease Management , United States
3.
J Am Coll Cardiol ; 83(23): 2324-2405, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38727647

ABSTRACT

AIM: The "2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy" provides recommendations to guide clinicians in the management of patients with hypertrophic cardiomyopathy. METHODS: A comprehensive literature search was conducted from September 14, 2022, to November 22, 2022, encompassing studies, reviews, and other evidence on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through May 23, 2023, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE: Hypertrophic cardiomyopathy remains a common genetic heart disease reported in populations globally. Recommendations from the "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy" have been updated with new evidence to guide clinicians.


Subject(s)
American Heart Association , Cardiomyopathy, Hypertrophic , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/diagnosis , Humans , United States , Cardiology/standards , Disease Management
5.
Am J Cardiol ; 212S: S4-S13, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38368035

ABSTRACT

Genetic testing is an important tool in the diagnosis and management of patients and families with hypertrophic cardiomyopathy (HCM). Modern testing can identify causative variants in 30 to >60% of patients, with probability of a positive test varying with baseline characteristics such as known family history of HCM. Patients diagnosed with HCM should be offered genetic counseling and genetic testing as appropriate. Standard multigene panels evaluate sarcomeric genes known to cause HCM as well as genetic conditions that can mimic HCM but require different management. Positive genetic testing (finding a pathogenic or likely pathogenic variant) helps to clarify diagnosis and assists in family screening. If there is high confidence that an identified variant is the cause of HCM, at-risk family members can pursue predictive testing to determine if they are truly at risk or if they can be dismissed from serial screening based on whether they inherited the family's causative variant. Interpreting test results can be complex, and providers should make use of multidisciplinary teams as well as evidence-based resources to obtain the best possible understanding of pathogenicity.


Subject(s)
Cardiomyopathy, Hypertrophic , Genetic Testing , Humans , Genetic Testing/methods , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Genetic Counseling , Family , Sarcomeres/genetics , Mutation
6.
Biotechnol Prog ; 40(2): e3416, 2024.
Article in English | MEDLINE | ID: mdl-38093578

ABSTRACT

Extracellular domain (ECD) antigens are crucial components for antibody discovery, in vitro assays, and epitope mapping during therapeutical antibody development. Oftentimes, those antigens are difficult to produce while retaining the biologic function/activity upon extracellular secretion in commonly used expression systems. We have developed an effective method to cope with the challenge of generating quality antigen ECDs. In this method, a monoclonal antibody (Mab) or antibody fragment antigen-binding (Fab) region acts as a "chaperone" to stabilize the antigen ECD through forming an antibody:antigen complex. This methodology includes transient co-expression of the complex in Chinese hamster ovary cells and then dissociation of the purified complex into individual components by low pH treatment in the presence of arginine. The antigen is then separated from the chaperone on a preparative size exclusion chromatography (pSEC) followed by an optional affinity chromatography process to remove residual Mab or Fab. We demonstrate this co-expression/disassociation methodology on two difficult-to-express antigen ECDs from cluster-of-differentiation/cytokine family and were successful in producing stable, biologically active antigens when the common methods using Histidine-tagged and/or Fc-fused protein failed. This can be applied as a general approach for antigen production if a Mab or binding partner is available.


Subject(s)
Antibodies, Monoclonal , Antigens , Cricetinae , Animals , CHO Cells , Cricetulus , Antigens/metabolism , Antibodies, Monoclonal/chemistry
7.
Circulation ; 149(2): 107-123, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37929589

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy and is classically caused by pathogenic or likely pathogenic variants (P/LP) in genes encoding sarcomere proteins. Not all subclinical variant carriers will manifest clinically overt disease because penetrance (proportion of sarcomere or sarcomere-related P/LP variant carriers who develop disease) is variable, age dependent, and not reliably predicted. METHODS: A systematic search of the literature was performed. We used random-effects generalized linear mixed model meta-analyses to contrast the cross-sectional prevalence and penetrance of sarcomere or sarcomere-related genes in 2 different contexts: clinically-based studies on patients and families with HCM versus population or community-based studies. Longitudinal family/clinical studies were additionally analyzed to investigate the rate of phenotypic conversion from subclinical to overt HCM during follow-up. RESULTS: In total, 455 full-text manuscripts and articles were assessed. In family/clinical studies, the prevalence of sarcomere variants in patients diagnosed with HCM was 34%. The penetrance across all genes in nonproband relatives carrying P/LP variants identified during cascade screening was 57% (95% CI, 52%-63%), and the mean age at HCM diagnosis was 38 years (95% CI, 36%-40%). Penetrance varied from ≈32% for MYL3 (myosin light chain 3) to ≈55% for MYBPC3 (myosin-binding protein C3), ≈60% for TNNT2 (troponin T2) and TNNI3 (troponin I3), and ≈65% for MYH7 (myosin heavy chain 7). Population-based genetic studies demonstrate that P/LP sarcomere variants are present in the background population but at a low prevalence of <1%. The penetrance of HCM in incidentally identified P/LP variant carriers was also substantially lower at ≈11%, ranging from 0% in Atherosclerosis Risk in Communities to 18% in UK Biobank. In longitudinal family studies, the pooled phenotypic conversion across all genes was 15% over an average of ≈8 years of follow-up, starting from a mean of ≈16 years of age. However, short-term gene-specific phenotypic conversion varied between ≈12% for MYBPC3 and ≈23% for MYH7. CONCLUSIONS: The penetrance of P/LP variants is highly variable and influenced by currently undefined and context-dependent genetic and environmental factors. Additional longitudinal studies are needed to improve our understanding of true lifetime penetrance in families and in the community and to identify drivers of the transition from subclinical to overt HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Adult , Penetrance , Mutation , Cross-Sectional Studies , Pedigree , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/epidemiology , Cardiomyopathy, Hypertrophic/genetics , Troponin T/genetics
8.
Am Heart J ; 266: 198-200, 2023 12.
Article in English | MEDLINE | ID: mdl-37980092

ABSTRACT

PURPOSE: To identify the cause of discrepancy between the INHERIT trial and VANISH trial in regards to disease modification of angiotensin receptor II blockers in hypertrophic cardiomyopathy (HCM). METHODS: We replicated the data analysis used in VANISH, converting individual change in each component of the composite endpoint into a z-score and applying this z-score to the INHERIT results. RESULTS: No significant improvement was identified in the composite z-score between the 2 groups at 12-month follow-up (P = .4). With the exception of tissue Doppler systolic (s') velocity, we found no significant benefit or harm from losartan compared to placebo for any of the individual components of the composite score at 12-month follow-up. Results were similar in analyses without imputed data or when restricted to patients with sarcomeric HCM. CONCLUSION: Despite applying the potentially more sensitive composite z-score endpoint as in the VANISH trial, no statistically significant benefits from the use of losartan compared to placebo could be detected at 12-month follow-up in patients with overt HCM participating in the INHERIT trial.


Subject(s)
Cardiomyopathy, Hypertrophic , Losartan , Humans , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Cardiomyopathy, Hypertrophic/drug therapy , Losartan/therapeutic use , Randomized Controlled Trials as Topic
9.
J Am Coll Cardiol ; 82(16): 1628-1647, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37821174

ABSTRACT

Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.


Subject(s)
Cardiomyopathies , Glycogen Storage Disease Type IIb , Heart Failure , Humans , Male , Female , Glycogen Storage Disease Type IIb/complications , Glycogen Storage Disease Type IIb/diagnosis , Glycogen Storage Disease Type IIb/genetics , Diagnosis, Differential , Consensus , Lysosomal-Associated Membrane Protein 2/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Heart Failure/diagnosis
10.
JAMA Cardiol ; 8(11): 1083-1088, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37672268

ABSTRACT

Importance: Valsartan has shown promise in attenuating cardiac remodeling in patients with early-stage sarcomeric hypertrophic cardiomyopathy (HCM). Genetic testing can identify individuals at risk of HCM in a subclinical stage who could benefit from therapies that prevent disease progression. Objective: To explore the potential for valsartan to modify disease development, and to characterize short-term phenotypic progression in subclinical HCM. Design, Setting, and Participants: The multicenter, double-blind, placebo-controlled Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) randomized clinical trial was conducted from April 2014 to July 2019 at 17 sites in 4 countries (Brazil, Canada, Denmark, and the US), with 2 years of follow-up. The prespecified exploratory VANISH cohort studied here included sarcomere variant carriers with subclinical HCM and early phenotypic manifestations (reduced E' velocity, electrocardiographic abnormalities, or an increased left ventricular [LV] wall thickness [LVWT] to cavity diameter ratio) but no LV hypertrophy (LVH). Data were analyzed between March and December 2022. Interventions: Treatment with placebo or valsartan (80 mg/d for children weighing <35 kg, 160 mg/d for children weighing ≥35 kg, or 320 mg/d for adults aged ≥18 years). Main Outcomes and Measures: The primary outcome was a composite z score incorporating changes in 9 parameters of cardiac remodeling (LV cavity volume, LVWT, and LV mass; left atrial [LA] volume; E' velocity and S' velocity; and serum troponin and N-terminal prohormone of brain natriuretic peptide levels). Results: This study included 34 participants, with a mean (SD) age of 16 (5) years (all were White). A total of 18 participants (8 female [44%] and 10 male [56%]) were randomized to valsartan and 16 (9 female [56%] and 7 male [44%]) were randomized to placebo. No statistically significant effects of valsartan on cardiac remodeling were detected (mean change in composite z score compared with placebo: -0.01 [95% CI, -0.29 to 0.26]; P = .92). Overall, 2-year phenotypic progression was modest, with only a mild increase in LA volume detected (increased by 3.5 mL/m2 [95% CI, 1.4-6.0 mL/m2]; P = .002). Nine participants (26%) had increased LVWT, including 6 (18%) who developed clinically overt HCM. Baseline LA volume index (LAVI; 35 vs 28 mL/m2; P = .01) and average interventricular septum thickness (8.5 vs 7.0 mm; P = .009) were higher in participants who developed HCM. Conclusions and Relevance: In this exploratory cohort, valsartan was not proven to slow progression of subclinical HCM. Minimal changes in markers of cardiac remodeling were observed, although nearly one-fifth of patients developed clinically overt HCM. Transition to disease was associated with greater baseline interventricular septum thickness and LAVI. These findings highlight the importance of following sarcomere variant carriers longitudinally and the critical need to improve understanding of factors that drive disease penetrance and progression. Trial Registration: ClinicalTrials.gov Identifier: NCT01912534.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Remodeling , Adult , Child , Humans , Male , Female , Adolescent , Genetic Predisposition to Disease , Hypertrophy, Left Ventricular , Valsartan/therapeutic use
11.
JACC Heart Fail ; 11(7): 735-748, 2023 07.
Article in English | MEDLINE | ID: mdl-37407153

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is frequently caused by pathogenic variants in genes encoding sarcomere proteins and is characterized by left ventricular (LV) hypertrophy, hypercontractility, and-in many cases-left ventricular outflow tract (LVOT) obstruction. Despite standard management, obstructive HCM (oHCM) can still cause substantial morbidity, highlighting the critical need for more effective disease-specific therapeutic approaches. Over the past decade, improved understanding of the molecular pathobiology of HCM has culminated in development of cardiac myosin inhibitors (CMIs), a novel drug class that in recent randomized clinical trials has been shown to decrease LVOT obstruction, improve exercise capacity, and ameliorate symptom burden in patients with oHCM. Although promising, areas of uncertainty remain, including the long-term safety and efficacy of CMIs and whether they have the potential to modify progression of disease. Herein, we review key milestones in the clinical development of CMIs, contextualize CMIs with established oHCM therapies, and discuss future challenges and opportunities for the use of CMIs across the HCM spectrum.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Failure , Humans , Heart Failure/drug therapy , Cardiac Myosins/genetics , Cardiac Myosins/therapeutic use , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/drug therapy , Hypertrophy, Left Ventricular
12.
Structure ; 31(8): 958-967.e3, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37279757

ABSTRACT

B and T lymphocyte attenuator (BTLA) is an attractive target for a new class of therapeutics that attempt to rebalance the immune system by agonizing checkpoint inhibitory receptors (CIRs). Herpesvirus entry mediator (HVEM) binds BTLA in both trans- and cis-orientations. We report here the development and structural characterization of three humanized BTLA agonist antibodies, 22B3, 25F7, and 23C8. We determined the crystal structures of the antibody-BTLA complexes, showing that these antibodies bind distinct and non-overlapping epitopes of BTLA. While all three antibodies activate BTLA, 22B3 mimics HVEM binding to BTLA and shows the strongest agonistic activity in functional cell assays and in an imiquimod-induced mouse model of psoriasis. 22B3 is also capable of modulating HVEM signaling through the BTLA-HVEM cis-interaction. The data obtained from crystal structures, biochemical assays, and functional studies provide a mechanistic model of HVEM and BTLA organization on the cell surface and informed the discovery of a highly active BTLA agonist.


Subject(s)
Receptors, Immunologic , T-Lymphocytes , Mice , Animals , T-Lymphocytes/metabolism , Receptors, Immunologic/metabolism , Antibodies/metabolism
13.
Circulation ; 148(5): 394-404, 2023 08.
Article in English | MEDLINE | ID: mdl-37226762

ABSTRACT

BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS: Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Dysfunction, Left , Adult , Humans , Male , Female , Child , Ventricular Function, Left , Stroke Volume , Risk Factors , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/complications , Prognosis , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/epidemiology , Registries
14.
JAMA Cardiol ; 8(6): 595-605, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37195701

ABSTRACT

Importance: Whether vigorous intensity exercise is associated with an increase in risk of ventricular arrhythmias in individuals with hypertrophic cardiomyopathy (HCM) is unknown. Objective: To determine whether engagement in vigorous exercise is associated with increased risk for ventricular arrhythmias and/or mortality in individuals with HCM. The a priori hypothesis was that participants engaging in vigorous activity were not more likely to have an arrhythmic event or die than those who reported nonvigorous activity. Design, Setting, and Participants: This was an investigator-initiated, prospective cohort study. Participants were enrolled from May 18, 2015, to April 25, 2019, with completion in February 28, 2022. Participants were categorized according to self-reported levels of physical activity: sedentary, moderate, or vigorous-intensity exercise. This was a multicenter, observational registry with recruitment at 42 high-volume HCM centers in the US and internationally; patients could also self-enroll through the central site. Individuals aged 8 to 60 years diagnosed with HCM or genotype positive without left ventricular hypertrophy (phenotype negative) without conditions precluding exercise were enrolled. Exposures: Amount and intensity of physical activity. Main Outcomes and Measures: The primary prespecified composite end point included death, resuscitated sudden cardiac arrest, arrhythmic syncope, and appropriate shock from an implantable cardioverter defibrillator. All outcome events were adjudicated by an events committee blinded to the patient's exercise category. Results: Among the 1660 total participants (mean [SD] age, 39 [15] years; 996 male [60%]), 252 (15%) were classified as sedentary, and 709 (43%) participated in moderate exercise. Among the 699 individuals (42%) who participated in vigorous-intensity exercise, 259 (37%) participated competitively. A total of 77 individuals (4.6%) reached the composite end point. These individuals included 44 (4.6%) of those classified as nonvigorous and 33 (4.7%) of those classified as vigorous, with corresponding rates of 15.3 and 15.9 per 1000 person-years, respectively. In multivariate Cox regression analysis of the primary composite end point, individuals engaging in vigorous exercise did not experience a higher rate of events compared with the nonvigorous group with an adjusted hazard ratio of 1.01. The upper 95% 1-sided confidence level was 1.48, which was below the prespecified boundary of 1.5 for noninferiority. Conclusions and Relevance: Results of this cohort study suggest that among individuals with HCM or those who are genotype positive/phenotype negative and are treated in experienced centers, those exercising vigorously did not experience a higher rate of death or life-threatening arrhythmias than those exercising moderately or those who were sedentary. These data may inform discussion between the patient and their expert clinician around exercise participation.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Arrest , Male , Humans , Cohort Studies , Prospective Studies , Arrhythmias, Cardiac/complications , Heart Arrest/complications , Exercise
15.
Circ Heart Fail ; 16(6): e010291, 2023 06.
Article in English | MEDLINE | ID: mdl-36880380

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. Pathogenic germline variation in genes encoding the sarcomere is the predominant cause of disease. However diagnostic features, including unexplained left ventricular hypertrophy, typically do not develop until late adolescence or after. The early stages of disease pathogenesis and the mechanisms underlying the transition to a clinically overt phenotype are not well understood. In this study, we investigated if circulating microRNAs (miRNAs) could stratify disease stage in sarcomeric HCM. METHODS: We performed arrays for 381 miRNAs using serum from HCM sarcomere variant carriers with and without a diagnosis of HCM and healthy controls. To identify differentially expressed circulating miRNAs between groups, multiple approaches were used including random forest, Wilcoxon rank sum test, and logistic regression. The abundance of all miRNAs was normalized to miRNA-320. RESULTS: Of 57 sarcomere variant carriers, 25 had clinical HCM and 32 had subclinical HCM with normal left ventricular wall thickness (21 with early phenotypic manifestations and 11 with no discernible phenotypic manifestations). Circulating miRNA profile differentiated healthy controls from sarcomere variant carriers with subclinical and clinical disease. Additionally, circulating miRNAs differentiated clinical HCM from subclinical HCM without early phenotypic changes; and subclinical HCM with and without early phenotypic changes. Circulating miRNA profiles did not differentiate clinical HCM from subclinical HCM with early phenotypic changes, suggesting biologic similarity between these groups. CONCLUSIONS: Circulating miRNAs may augment the clinical stratification of HCM and improve understanding of the transition from health to disease in sarcomere gene variant carriers.


Subject(s)
Cardiomyopathy, Hypertrophic , Circulating MicroRNA , Heart Failure , MicroRNAs , Humans , Sarcomeres/genetics , Circulating MicroRNA/genetics , Mutation , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Phenotype , MicroRNAs/genetics
17.
medRxiv ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36778260

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.

18.
JACC Cardiovasc Imaging ; 16(4): 478-491, 2023 04.
Article in English | MEDLINE | ID: mdl-36648040

ABSTRACT

BACKGROUND: Abnormal global longitudinal strain (GLS) has been independently associated with adverse cardiac outcomes in both obstructive and nonobstructive hypertrophic cardiomyopathy. OBJECTIVES: The goal of this study was to understand predictors of abnormal GLS from baseline data from the National Heart, Lung, and Blood Institute (NHLBI) Hypertrophic Cardiomyopathy Registry (HCMR). METHODS: The study evaluated comprehensive 3-dimensional left ventricular myocardial strain from cine cardiac magnetic resonance in 2,311 patients from HCMR using in-house validated feature-tracking software. These data were correlated with other imaging markers, serum biomarkers, and demographic variables. RESULTS: Abnormal median GLS (> -11.0%) was associated with higher left ventricular (LV) mass index (93.8 ± 29.2 g/m2 vs 75.1 ± 19.7 g/m2; P < 0.0001) and maximal wall thickness (21.7 ± 5.2 mm vs 19.3 ± 4.1 mm; P < 0.0001), lower left (62% ± 9% vs 66% ± 7%; P < 0.0001) and right (68% ± 11% vs 69% ± 10%; P < 0.01) ventricular ejection fractions, lower left atrial emptying functions (P < 0.0001 for all), and higher presence and myocardial extent of late gadolinium enhancement (6 SD and visual quantification; P < 0.0001 for both). Elastic net regression showed that adjusted predictors of GLS included female sex, Black race, history of syncope, presence of systolic anterior motion of the mitral valve, reverse curvature and apical morphologies, LV ejection fraction, LV mass index, and both presence/extent of late gadolinium enhancement and baseline N-terminal pro-B-type natriuretic peptide and troponin levels. CONCLUSIONS: Abnormal strain in hypertrophic cardiomyopathy is associated with other imaging and serum biomarkers of increased risk. Further follow-up of the HCMR cohort is needed to understand the independent relationship between LV strain and adverse cardiac outcomes in hypertrophic cardiomyopathy.


Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , United States , Humans , Female , Gadolinium , National Heart, Lung, and Blood Institute (U.S.) , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Ventricular Function, Left , Stroke Volume , Biomarkers , Registries
19.
Circ Genom Precis Med ; 16(1): e003716, 2023 02.
Article in English | MEDLINE | ID: mdl-36598836

ABSTRACT

BACKGROUND: Left ventricular maximum wall thickness (LVMWT) is an important biomarker of left ventricular hypertrophy and provides diagnostic and prognostic information in hypertrophic cardiomyopathy (HCM). Limited information is available on the genetic determinants of LVMWT. METHODS: We performed a genome-wide association study of LVMWT measured from the cardiovascular magnetic resonance examinations of 42 176 European individuals. We evaluated the genetic relationship between LVMWT and HCM by performing pairwise analysis using the data from the Hypertrophic Cardiomyopathy Registry in which the controls were randomly selected from UK Biobank individuals not included in the cardiovascular magnetic resonance sub-study. RESULTS: Twenty-one genetic loci were discovered at P<5×10-8. Several novel candidate genes were identified including PROX1, PXN, and PTK2, with known functional roles in myocardial growth and sarcomere organization. The LVMWT genetic risk score is predictive of HCM in the Hypertrophic Cardiomyopathy Registry (odds ratio per SD: 1.18 [95% CI, 1.13-1.23]) with pairwise analyses demonstrating a moderate genetic correlation (rg=0.53) and substantial loci overlap (19/21). CONCLUSIONS: Our findings provide novel insights into the genetic underpinning of LVMWT and highlight its shared genetic background with HCM, supporting future endeavours to elucidate the genetic etiology of HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Hypertrophy, Left Ventricular , Humans , Biological Specimen Banks , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Genome-Wide Association Study , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/genetics , United Kingdom
20.
ESC Heart Fail ; 9(4): 2189-2198, 2022 08.
Article in English | MEDLINE | ID: mdl-36255281

ABSTRACT

AIMS: To describe the natural history of SARS-CoV-2 infection in patients with hypertrophic cardiomyopathy (HCM) compared with a control group and to identify predictors of adverse events. METHODS AND RESULTS: Three hundred and five patients [age 56.6 ± 16.9 years old, 191 (62.6%) male patients] with HCM and SARS-Cov-2 infection were enrolled. The control group consisted of 91 131 infected individuals. Endpoints were (i) SARS-CoV-2 related mortality and (ii) severe clinical course [death or intensive care unit (ICU) admission]. New onset of atrial fibrillation, ventricular arrhythmias, shock, stroke, and cardiac arrest were also recorded. Sixty-nine (22.9%) HCM patients were hospitalized for non-ICU level care, and 21 (7.0%) required ICU care. Seventeen (5.6%) died: eight (2.6%) of respiratory failure, four (1.3%) of heart failure, two (0.7%) suddenly, and three (1.0%) due to other SARS-CoV-2-related complications. Covariates associated with mortality in the multivariable were age {odds ratio (OR) per 10 year increase 2.25 [95% confidence interval (CI): 1.12-4.51], P = 0.0229}, baseline New York Heart Association class [OR per one-unit increase 4.01 (95%CI: 1.75-9.20), P = 0.0011], presence of left ventricular outflow tract obstruction [OR 5.59 (95%CI: 1.16-26.92), P = 0.0317], and left ventricular systolic impairment [OR 7.72 (95%CI: 1.20-49.79), P = 0.0316]. Controlling for age and sex and comparing HCM patients with a community-based SARS-CoV-2 cohort, the presence of HCM was associated with a borderline significant increased risk of mortality OR 1.70 (95%CI: 0.98-2.91, P = 0.0600). CONCLUSIONS: Over one-fourth of HCM patients infected with SARS-Cov-2 required hospitalization, including 6% in an ICU setting. Age and cardiac features related to HCM, including baseline functional class, left ventricular outflow tract obstruction, and systolic impairment, conveyed increased risk of mortality.


Subject(s)
Atrial Fibrillation , COVID-19 , Cardiomyopathy, Hypertrophic , Ventricular Dysfunction, Left , Humans , Male , Adult , Middle Aged , Aged , Female , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/epidemiology , Registries , Ventricular Dysfunction, Left/complications , Atrial Fibrillation/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...