Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 8(9): 2217-2234, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38457926

ABSTRACT

ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Interferon Regulatory Factors , Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Humans , Mice , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/antagonists & inhibitors , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Tumor Suppressor Proteins/metabolism , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/metabolism
2.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232498

ABSTRACT

Dry eye is one of the most common ocular surface diseases caused by tear film instability and ocular surface damage due to an abnormal quality or quantity of tears. Inflammatory factors can initiate relevant transduction signalling pathways and trigger the inflammatory cascade response, resulting in ocular surface inflammation. It has been shown that the active ingredients in Dendrobium, such as polysaccharides, alkaloids and phenols, have anti-inflammatory, anti-tumour and immunity-boosting effects, and Dendrobium officinale extract can improve glandular secretion function, increase salivary secretion and increase the expression level of water channel protein in salivary glands in patients with dry eye syndromes. We investigated the in vitro cytoprotective effect of Dendrobium extracts in sodium chloride induced hyperosmotic conditions in human cornea keratocytes (HKs). Results showed that Dendrobium officinale Kimura et Migo water extract (DOW) and Dendrobium loddigesii Rolfe water extract (DLW) could upregulate the expression of aquaporins (AQP)5 protein, thus exerting a repairing effect by promoting cell migration. Furthermore, oral administration of DOW and DLW enhanced tear production in rats and exerted a protective effect on ocular surface damage. DOW and DLW could upregulate the expression of AQP5 and mucin (muc)5ac proteins in the lacrimal gland and reduce the inflammatory response. DOW and DLW inhibited the activation of the corresponding mitogen-activated protein kinases (MAPK) and NF-KB pathway, thereby playing a role in improving dry eye symptoms. This study provides a new perspective on dry eye treatment, and DOW and DLW may be potential therapeutic agents for dry eye.


Subject(s)
Dendrobium , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/therapeutic use , Aquaporin 5/metabolism , Dendrobium/metabolism , Dry Eye Syndromes/metabolism , Humans , Mitogen-Activated Protein Kinases/metabolism , Mucins/metabolism , NF-kappa B/metabolism , Phenols/metabolism , Polysaccharides/metabolism , Rats , Sodium Chloride/metabolism , Tears/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...