Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37510231

ABSTRACT

Pattern hair loss can occur in both men and women, and the underlying molecular mechanisms have been continuously studied in recent years. Male androgenetic alopecia (M-AGA), also termed male pattern hair loss, is the most common type of hair loss in men. M-AGA is considered an androgen-dependent trait with a background of genetic predisposition. The interplay between genetic and non-genetic factors leads to the phenotype of follicular miniaturization. Although this similar pattern of phenotypic miniaturization can also be found in female pattern hair loss (FPHL), the corresponding genetic factors in M-AGA do not account for the phenotype in FPHL, indicating that there are different genes contributing to FPHL. Therefore, the role of genetic factors in FPHL is still uncertain. Understanding the genetic mechanism that causes FPHL is crucial for the future development of personalized treatment strategies. This review aims to highlight the differences in the ethnic prevalence and genetic background of FPHL, as well as the current genetic research progress in nutrition, Wnt signaling, and sex hormones related to FPHL.


Subject(s)
Alopecia , Androgens , Male , Female , Humans , Alopecia/genetics , Genetic Predisposition to Disease , Phenotype , Wnt Signaling Pathway/genetics
2.
Genes (Basel) ; 14(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37510267

ABSTRACT

Alopecia areata (AA) is a chronic, non-scarring, immune-mediated skin disease that affects approximately 0.5-2% of the global population. The etiology of AA is complex and involves genetic and environmental factors, with significant advancements in genetic research occurring in recent years. In addition to well-known genes such as PTPN22, CTLA4, and IL2, which have been widely supported as being associated with AA, an increasing number of specific gene-related loci have been discovered through advances in genetic research. For instance, gene analysis of microRNAs can reveal the critical role of miRNAs in regulating gene expression, aiding in the understanding of cellular and organismal functional regulatory mechanisms. Furthermore, numerous studies have confirmed the existence of correlations between AA and other immune-related diseases. Examples include hyperthyroidism and rheumatoid arthritis. By understanding the interrelationships between AA and other immune diseases, we can further comprehend potential shared genetic foundations or pathogenic mechanisms among different diseases. Genetic research plays a crucial role in unraveling the pathogenesis of AA, as the identification of genetic variations associated with AA can assist in formulating more effective and targeted treatment strategies.


Subject(s)
Alopecia Areata , Humans , Alopecia Areata/genetics , Genetic Predisposition to Disease , Alleles , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
3.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239825

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory decline and cognitive impairment. Research on biomarkers can aid in early diagnosis, monitoring disease progression, evaluating treatment efficacy, and advancing fundamental research. We conducted a cross-sectional longitudinal study to see if there is an association between AD patients and age-matched healthy controls for their physiologic skin characteristics, such as pH, hydration, transepidermal water loss (TEWL), elasticity, microcirculation, and ApoE genotyping. The study used the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating-Sum of the Boxes (CDR-SB) scales as references to quantify the presence of disease, if any. Our findings demonstrate that AD patients have a dominantly neutral pH, greater skin hydration, and less elasticity compared to the control subjects. At baseline, the tortuous capillary percentage negatively correlated with MMSE scores in AD patients. However, AD patients who carry the ApoE E4 allele and exhibit a high percentage of tortuous capillaries and capillary tortuous numbers have shown better treatment outcomes at six months. Therefore, we believe that physiologic skin testing is a rapid and effective way to screen, monitor progression, and ultimately guide the most appropriate treatment for AD patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Longitudinal Studies , Cross-Sectional Studies , Treatment Outcome , Apolipoproteins E/genetics , Cognitive Dysfunction/psychology , Biomarkers , Disease Progression , Neuropsychological Tests
4.
Insights Imaging ; 14(1): 14, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36690870

ABSTRACT

PURPOSE: To investigate the generalizability of transfer learning (TL) of automated tumor segmentation from cervical cancers toward a universal model for cervical and uterine malignancies in diffusion-weighted magnetic resonance imaging (DWI). METHODS: In this retrospective multicenter study, we analyzed pelvic DWI data from 169 and 320 patients with cervical and uterine malignancies and divided them into the training (144 and 256) and testing (25 and 64) datasets, respectively. A pretrained model was established using DeepLab V3 + from the cervical cancer dataset, followed by TL experiments adjusting the training data sizes and fine-tuning layers. The model performance was evaluated using the dice similarity coefficient (DSC). RESULTS: In predicting tumor segmentation for all cervical and uterine malignancies, TL models improved the DSCs from the pretrained cervical model (DSC 0.43) when adding 5, 13, 26, and 51 uterine cases for training (DSC improved from 0.57, 0.62, 0.68, 0.70, p < 0.001). Following the crossover at adding 128 cases (DSC 0.71), the model trained by combining data from adding all the 256 patients exhibited the highest DSCs for the combined cervical and uterine datasets (DSC 0.81) and cervical only dataset (DSC 0.91). CONCLUSIONS: TL may improve the generalizability of automated tumor segmentation of DWI from a specific cancer type toward multiple types of uterine malignancies especially in limited case numbers.

5.
Nutrients ; 16(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201907

ABSTRACT

The purpose of this study was to investigate genetic factors associated with metabolic syndrome (MetS) by conducting a large-scale genome-wide association study (GWAS) in Taiwan, addressing the limited data on Asian populations compared to Western populations. Using data from the Taiwan Biobank, comprehensive clinical and genetic information from 107,230 Taiwanese individuals was analyzed. Genotyping data from the TWB1.0 and TWB2.0 chips, including over 650,000 single nucleotide polymorphisms (SNPs), were utilized. Genotype imputation using the 1000 Genomes Project was performed, resulting in more than 9 million SNPs. MetS was defined based on a modified version of the Adult Treatment Panel III criteria. Among all participants (mean age: 50 years), 23% met the MetS definition. GWAS analysis identified 549 SNPs significantly associated with MetS, collectively mapping to 10 genomic risk loci. Notable risk loci included rs1004558, rs3812316, rs326, rs4486200, rs2954038, rs10830963, rs662799, rs62033400, rs183130, and rs34342646. Gene-set analysis revealed 22 associated genes: CETP, LPL, APOA5, SIK3, ZPR1, APOC1, BUD13, MLXIPL, TOMM40, GCK, YKT6, RPS6KB1, FTO, VMP1, TUBD1, BCL7B, C19orf80 (ANGPTL8), SIDT2, SENP7, PAFAH1B2, DOCK6, and FOXA2. This study identified genomic risk loci for MetS in a large Taiwanese population through a comprehensive GWAS approach. These associations provide novel insights into the genetic basis of MetS and hold promise for the potential discovery of clinical biomarkers.


Subject(s)
East Asian People , Genome-Wide Association Study , Metabolic Syndrome , Adult , Humans , Middle Aged , Genotype , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , East Asian People/genetics
6.
Cancers (Basel) ; 13(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808691

ABSTRACT

Precise risk stratification in lymphadenectomy is important for patients with endometrial cancer (EC), to balance the therapeutic benefit against the operation-related morbidity and mortality. We aimed to investigate added values of computer-aided segmentation and machine learning based on clinical parameters and diffusion-weighted imaging radiomics for predicting lymph node (LN) metastasis in EC. This prospective observational study included 236 women with EC (mean age ± standard deviation, 51.2 ± 11.6 years) who underwent magnetic resonance (MR) imaging before surgery during July 2010-July 2018, randomly split into training (n = 165) and test sets (n = 71). A decision-tree model was constructed based on mean apparent diffusion coefficient (ADC) value of the tumor (cutoff, 1.1 × 10-3 mm2/s), skewness of the relative ADC value (cutoff, 1.2), short-axis diameter of LN (cutoff, 1.7 mm) and skewness ADC value of the LN (cutoff, 7.2 × 10-2), as well as tumor grade (1 vs. 2 and 3), and clinical tumor size (cutoff, 20 mm). The sensitivity and specificity of the model were 94% and 80% for the training set and 86%, 78% for the independent testing set, respectively. The areas under the receiver operating characteristics curve (AUCs) of the decision-tree was 0.85-significantly higher than the mean ADC model (AUC = 0.54) and LN short-axis diameter criteria (AUC = 0.62) (both p < 0.0001). We concluded that a combination of clinical and MR radiomics generates a prediction model for LN metastasis in EC, with diagnostic performance surpassing the conventional ADC and size criteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...