Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mov Disord ; 37(4): 767-777, 2022 04.
Article in English | MEDLINE | ID: mdl-34951052

ABSTRACT

BACKGROUND: Polyglutamine (polyQ) diseases are dominant neurodegenerative diseases caused by an expansion of the polyQ-encoding CAG repeats in the disease-causing gene. The length of the CAG repeats is the major determiner of the age at onset (AO) of polyQ diseases, including Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). OBJECTIVE: We set out to identify common genetic variant(s) that may affect the AO of polyQ diseases. METHODS: Three hundred thirty-seven patients with HD or SCA3 were enrolled for targeted sequencing of 583 genes implicated in proteinopathies. In total, 16 genes were identified as containing variants that are associated with late AO of polyQ diseases. For validation, we further investigate the variants of PIAS1 because PIAS1 is an E3 SUMO (small ubiquitin-like modifier) ligase for huntingtin (HTT), the protein linked to HD. RESULTS: Biochemical analyses revealed that the ability of PIAS1S510G to interact with mutant huntingtin (mHTT) was less than that of PIAS1WT , resulting in lower SUMOylation of mHTT and lower accumulation of insoluble mHTT. Genetic knock-in of PIAS1S510G in a HD mouse model (R6/2) ameliorated several HD-like deficits (including shortened life spans, poor grip strength and motor coordination) and reduced neuronal accumulation of mHTT. CONCLUSIONS: Our findings suggest that PIAS1 is a genetic modifier of polyQ diseases. The naturally occurring variant, PIAS1S510G , is associated with late AO in polyQ disease patients and milder disease severity in HD mice. Our study highlights the possibility of targeting PIAS1 or pathways governing protein homeostasis as a disease-modifying approach for treating patients with HD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Huntington Disease , Proteostasis , Animals , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Ligases/metabolism , Mice , Peptides , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism
2.
Sci Rep ; 10(1): 9350, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32494003

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 8(1): 9786, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29955155

ABSTRACT

Smad4, a common-mediator of Smads, plays a central role in forming complexes with receptor-phosphorylated Smads, and then transduces transforming growth factor (TGF)-ß signals into the nuclei. Although many cellular factors are involved in TGF-ß induced epithelial-to-mesenchymal transition (EMT) and cell migration, very little is known with the mechanism of Smad4 regulation on pro-oncogenes response by TGF-ß. Herein, we demonstrate the interaction of Sentrin-specific protease 2 (SENP2) with Smad4 through SENP2 residue 363~400. The same segment is also important for desumoylation of Smad4, and able to relieve sumoylation-mediated TGF-ß repression. The SENP2363~400 segment is critical for TGF-ß-induced cell migration, which is correlated with SENP2363~400 deletion mutant failed to increase matrix metalloproteinase (MMP)-9 and EMT marker gene expression. Moreover, our results suggest that the interaction and desumoylation between SENP2 and Smad4 promote cell migration in triple-negative breast cancer cells. Altogether, our data show how SENP2 regulates its substrate for desumoylation, and also the role of SENP2 in TGF-ß induced cancer cell migration.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Cysteine Endopeptidases/metabolism , Cell Movement , Humans , Protein Binding , Signal Transduction/drug effects , Smad4 Protein/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Substrate Specificity , Sumoylation , Transforming Growth Factor beta
4.
Hum Mol Genet ; 27(13): 2306-2317, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29668892

ABSTRACT

XRCC1 is an essential scaffold protein for base excision repair (BER) and helps to maintain genomic stability. XRCC1 has been indicated as a substrate for small ubiquitin-like modifier modification (SUMOylation); however, how XRCC1 SUMOylation is regulated in cells and how SUMOylated XRCC1 regulates BER activity are not well understood. Here, we show that SUMOylation of XRCC1 is regulated in cells under methyl-methanesulfonate (MMS) treatment and facilitates BER. Poly(ADP-ribose) polymerase 1 (PARP1) is activated by MMS immediately and synthesizes poly(ADP-ribose) (PAR), which in turn promotes recruitment of SUMO E3 TOPORS to XRCC1 and facilitates XRCC1 SUMOylation. A SUMOylation-defective mutant of XRCC1 had lower binding activity for DNA polymerase beta (POLB) and was linked to a lower capacity for repair of MMS-induced DNA damages. Our study therefore identified a pathway in which DNA damage-induced poly(ADP-ribosyl)ation (PARylation) promotes SUMOylation of XRCC1, which leads to more efficient recruitment of POLB to complete BER.


Subject(s)
DNA Polymerase beta/genetics , Poly ADP Ribosylation/genetics , Sumoylation/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Alcohol Oxidoreductases/genetics , DNA Damage/drug effects , DNA Repair/genetics , DNA-Binding Proteins/genetics , Genomic Instability/genetics , Humans , Methyl Methanesulfonate/pharmacology , Poly (ADP-Ribose) Polymerase-1/genetics , Protein Binding/genetics
5.
Sci Rep ; 8(1): 5022, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29555948

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 7(1): 17391, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234076

ABSTRACT

The negatively charged amino acid-dependent sumoylation motif (NDSM) carries an additional stretch of acidic residues downstream of the consensus Ψ-K-x-E/D sumoylation motif. We have previously shown that acetylation of the SUMO E2 conjugase enzyme, Ubc9, at K65 downregulates its binding to the NDSM and renders a selective decrease in sumoylation of substrates with the NDSM motif. Here, we provide detailed structural, thermodynamic, and kinetics results of the interactions between Ubc9 and its K65 acetylated variant (Ac-Ubc9K65) with three NDSMs derived from Elk1, CBP, and Calpain2 to rationalize the mechanism beneath this reduced binding. Our nuclear magnetic resonance (NMR) data rule out a direct interaction between the NDSM and the K65 residue of Ubc9. Similarly, we found that NDSM binding was entropy-driven and unlikely to be affected by the negative charge by K65 acetylation. Moreover our NMR, mutagenesis and molecular dynamics simulation studies defined the sequence of the NDSM as Ψ-K-x-E/D-x1-x2-(x3/E/D)-(x4/E/D)-xn and determined that K74 and K76 were critical Ubc9 residues interacting with the negatively charged residues of the NDSM.


Subject(s)
Calpain/metabolism , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Sialoglycoproteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , ets-Domain Protein Elk-1/metabolism , Acetylation , Calpain/chemistry , Humans , Kinetics , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Binding , Sialoglycoproteins/chemistry , Thermodynamics , Ubiquitin-Conjugating Enzymes/chemistry , ets-Domain Protein Elk-1/chemistry
7.
EMBO J ; 32(6): 791-804, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23395904

ABSTRACT

While numerous small ubiquitin-like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid-dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ-K-X-E/D consensus motif, such as CBP and Elk-1, but not substrates with core ψ-K-X-E/D motif alone or SUMO-interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia-elicited modulation of sumoylation and target gene expression of CBP and Elk-1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.


Subject(s)
Acetyltransferases/metabolism , Protein Processing, Post-Translational , SUMO-1 Protein/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/physiology , Acetylation , Acetyltransferases/physiology , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cells, Cultured , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/physiology , RNA, Small Interfering/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/physiology , Sumoylation/drug effects , Sumoylation/genetics , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/genetics , ets-Domain Protein Elk-1/metabolism
8.
Mol Cell ; 42(1): 62-74, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21474068

ABSTRACT

Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/physiology , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Apoptosis/genetics , Carrier Proteins/genetics , Casein Kinase II/metabolism , Cell Line , Co-Repressor Proteins , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Models, Molecular , Molecular Chaperones , Nuclear Proteins/genetics , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , SUMO-1 Protein/metabolism , Stress, Physiological
9.
Biochem Biophys Res Commun ; 384(4): 444-9, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19422794

ABSTRACT

Small ubiquitin-like modifier (SUMO) modification has been shown to be involved in the regulation of various cellular processes including gene transcription, nucleocytoplasmic transport, cell cycle, DNA repair, stress response, and signal transduction. However, very little is known about the process of cell migration being modulated by SUMO modification. Here, we show that calpain-2, a protease involved in cell motility, can be SUMO modified at lysine residue 390. Converting the SUMO acceptor lysine residue to arginine residue significantly attenuated calpain-2 activity, correlating well with a loss of calpain-2-elicited cell motility. Accordingly, expression of SENP1 could abrogate calpain-2 sumoylation, causing an inhibition on calpain-2-dependent activity and cell motility. These results not only identify calpain-2 as a substrate for sumoylation but also provide an important role of sumoylation in regulating cell migration.


Subject(s)
Calpain/metabolism , Cell Movement , SUMO-1 Protein/metabolism , Animals , COS Cells , Calpain/genetics , Chlorocebus aethiops , Cysteine Endopeptidases , Endopeptidases/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Mutation
10.
Mol Cell Biol ; 28(18): 5658-67, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18625722

ABSTRACT

Promyelocytic leukemia protein (PML) sumoylation has been proposed to control the formation of PML nuclear bodies (NBs) and is crucial for PML-dependent cellular processes, including apoptosis and transcriptional regulation. However, the regulatory mechanisms of PML sumoylation and its specific roles in the formation of PML NBs remain largely unknown. Here, we show that histone deacetylase 7 (HDAC7) knockdown reduces the size and the number of the PML NBs in human umbilical vein endothelial cells (HUVECs). HDAC7 coexpression stimulates PML sumoylation independent of its HDAC activity. Furthermore, HDAC7 associates with the E2 SUMO ligase, Ubc9, and stimulates PML sumoylation in vitro, suggesting that it possesses a SUMO E3 ligase-like activity to promote PML sumoylation. Importantly, HDAC7 knockdown inhibits tumor necrosis factor alpha-induced PML sumoylation and the formation of PML NBs in HUVECs. These results demonstrate a novel function of HDAC7 and provide a regulatory mechanism of PML sumoylation.


Subject(s)
Histone Deacetylases/metabolism , Intranuclear Inclusion Bodies/metabolism , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line , Cell Nucleus/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , HeLa Cells , Histone Deacetylases/genetics , Humans , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Proteins/genetics , Umbilical Veins/cytology
11.
Mol Cell ; 24(3): 341-54, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17081986

ABSTRACT

Small ubiquitin-like modifier (SUMO) modification has emerged as an important posttranslational control of protein functions. Daxx, a transcriptional corepressor, was reported to repress the transcriptional potential of several transcription factors and target to PML oncogenic domains (PODs) via SUMO-dependent interactions. The mechanism by which Daxx binds to sumoylated factors mediating transcriptional and subnuclear compartmental regulation remains unclear. Here, we define a SUMO-interacting motif (SIM) within Daxx and show it to be crucial for targeting Daxx to PODs and for transrepression of several sumoylated transcription factors, including glucocorticoid receptor (GR). In addition, the capability of Daxx SIM to bind SUMO also controls Daxx sumoylation. We further demonstrate that arsenic trioxide-induced sumoylation of PML correlates with a change of endogenous Daxx partitioning from GR-regulated gene promoter to PODs and a relief of Daxx repression on GR target gene expression. Our results provide mechanistic insights into Daxx in SUMO-dependent transcriptional control and subnuclear compartmentalization.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Arsenic Trioxide , Arsenicals/pharmacology , COS Cells , Carrier Proteins/chemistry , Chlorocebus aethiops , Co-Repressor Proteins , Dexamethasone/pharmacology , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Mice , Molecular Chaperones , Molecular Sequence Data , Neoplasm Proteins/metabolism , Nuclear Proteins/chemistry , Oxides/pharmacology , Promyelocytic Leukemia Protein , Protein Binding , Protein Structure, Tertiary , Protein Transport , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...