Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuromuscul Disord ; 34: 32-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142473

ABSTRACT

We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.


Subject(s)
Muscular Diseases , Myopathies, Nemaline , Humans , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Muscle, Skeletal/pathology , Actins/genetics , Mutation , Muscular Diseases/genetics , Amino Acids/genetics , Amino Acids/metabolism
2.
PLoS One ; 8(11): e78850, 2013.
Article in English | MEDLINE | ID: mdl-24223168

ABSTRACT

Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS). Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.


Subject(s)
Colitis/metabolism , Colonic Neoplasms/metabolism , Interleukin-11/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Animals , Apoptosis/drug effects , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Proliferation/drug effects , Colitis/chemically induced , Colitis/genetics , Colonic Neoplasms/genetics , Dextran Sulfate/toxicity , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation, Neoplastic , Immunoblotting , In Situ Nick-End Labeling , Interleukin-11/genetics , Interleukin-6/genetics , Iron, Dietary/adverse effects , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...