Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853899

ABSTRACT

The globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe PV ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown. Here we show that GPe PV cells control cocaine reward and sensitization by inhibiting GABAergic neurons in the substantia nigra pars reticulata (SNr GABA ), and ultimately, selectively modulating the activity of ventral tegmental area dopamine (VTA DA ) cells projecting to the lateral shell of the nucleus accumbens (NAcLat). A major input to GPe PV cells is the indirect pathway of the dorsomedial striatum (DMS D 2 ), which receives DAergic innervation from collaterals of VTA DA →NAcLat cells, making this a closed-loop circuit. Cocaine likely facilitates reward and sensitization not directly through actions in the GPe, but rather in the upstream DMS, where the cocaine-induced elevation of DA triggers a depression in DMS D 2 cell activity. This cocaine-induced elevation in DA levels can be blocked by inhibition of GPe PV cells, closing the loop. Interestingly, the level of GPe PV cell activity prior to cocaine administration is correlated with the extent of reward and sensitization that animals experience in response to future administration of cocaine, indicating that GPe PV cell activity is a key predictor of future behavioral responses to cocaine. Single nucleus RNA-sequencing of GPe cells indicated that genes encoding voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability are downregulated in GPe PV cells following a single cocaine exposure, contributing to the elevation in GPe PV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPe PV cell excitability and also impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its potential as a therapeutic to counteract psychostimulant use disorder. Our findings illuminate the molecular and circuit mechanisms by which the GPe orchestrates brain-wide changes in response to cocaine that are required for reward, sensitization, and self-administration behaviors.

2.
J Biol Chem ; 282(30): 21913-23, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17545165

ABSTRACT

DNA repair is known as a defense mechanism against genotoxic insults. However, the most lethal type of DNA damages, double-strand DNA breaks (DSBs), can be produced by DNA repair. We have previously demonstrated that when long patch base excision repair attempts to repair a synthetic substrate containing two uracils, the repair produces DSBs (Vispe, S. and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392 and Vispe, S., Ho, E. L., Yung, T. M., and Satoh, M. S. (2003) J. Biol. Chem. 278, 35279-35285). In this synthetic substrate, the two uracils are located on the opposite DNA strands (separated by an intervening sequence stable at 37 degrees C) and represent a high risk site for DSB formation. It is not clear, however, whether similar high risk sites are also induced in genomic DNA by exposure to DNA damaging agents. Thus, to investigate the mechanisms of DSB formation, we have modified the DSB formation assay developed previously and demonstrated that high risk sites for DSB formation are indeed generated in genomic DNA by exposure of cells to alkylating agents. In fact, genomic DNA containing alkylated base damages, which could represent high risk sites, are converted into DSBs by enzymes present in extracts prepared from cells derived from clinically normal individuals. Furthermore, DSBs are also produced by extracts from cells derived from ataxia-telangiectasia patients who show cancer proneness due to an impaired response to DSBs. These results suggest the presence of a novel link between base damage formation and DSBs and between long patch base excision repair and human diseases that occur due to an impaired response to DSB.


Subject(s)
DNA Damage/drug effects , DNA/genetics , Methylnitronitrosoguanidine/toxicity , Alkylating Agents/toxicity , Base Sequence , Cell Line , DNA/drug effects , DNA/radiation effects , DNA Damage/radiation effects , DNA, Circular/drug effects , DNA, Circular/genetics , Gamma Rays , HeLa Cells , Humans , Polymerase Chain Reaction , Uracil
3.
J Biol Chem ; 280(1): 448-57, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15498776

ABSTRACT

Human immunodeficiency virus, type 1 (HIV-1) transcription is regulated by a virus-encoded protein, Tat, which forms a complex with a host cellular factor, positive transcription elongation factor b (P-TEFb). When this complex binds to TAR RNA synthesized from the HIV-1 long terminal repeat promoter element, transcription is trans-activated. In this study we showed that, in host cells, HIV-1 transcription is negatively regulated by competition of poly(ADP-ribose) polymerase-1 (PARP-1) with Tat.P-TEFb for binding to TAR RNA. PARP-1, which has a high affinity for TAR RNA (K(D) = 1.35 x 10(-10) M), binds to the loop region of TAR RNA and displaces Tat or Tat.P-TEFb from the RNA. In vitro transcription assays showed that this displacement leads to suppression of Tat-mediated trans-activation of transcription. Furthermore in vivo expression of luciferase or destabilized enhanced green fluorescent protein genes under the control of the HIV-1 long terminal repeat promoter was suppressed by PARP-1. Thus, these results suggest that PARP-1 acts as a negative regulator of HIV-1 transcription through competitive binding with Tat or the Tat.P-TEFb complex to TAR RNA.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Poly(ADP-ribose) Polymerases/genetics , Positive Transcriptional Elongation Factor B/genetics , RNA-Binding Proteins/genetics , Virus Replication , Binding, Competitive , Cell Line , HIV Infections/genetics , HIV Infections/metabolism , Humans , Macromolecular Substances/metabolism , Nuclear Proteins , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding , RNA/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic
4.
J Biol Chem ; 279(12): 11992-9, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-14715657

ABSTRACT

Poly(ADP-ribose) polymerase-1 is a highly abundant nuclear enzyme implicated in transcription, DNA replication, and DNA repair through binding of nascent RNA and interactions with various factors. We found that purified fractions of recombinant human poly(ADP-ribose) polymerase-1 expressed in Escherichia coli possess yet another activity, a Mg(2+)-dependent DNA supercoil relaxation activity. Cleavage of recombinant poly(ADP-ribose) polymerase-1 by caspase-3, an apoptotic protease, reduced this activity, as did the removal of either of the two zinc finger motifs located in the N-terminal DNA-binding domain of poly(ADP-ribose) polymerase-1. In addition, this activity was separated from E. coli topoisomerase I by gel-filtration column chromatography, suggesting that this activity is specifically associated with poly(ADP-ribose) polymerase-1. Because this relaxation activity did not require ATP and was resistant to VP16, a topoisomerase II inhibitor, this activity is closer to that of topoisomerase I. However, the supercoiled DNA relaxation activity associated with poly(ADP-ribose) polymerase-1 is distinct from that of human or E. coli topoisomerase I, as this activity could not completely remove superhelical tensions from plasmid DNA. Thus, we referred to this activity as topoisomerase I-like activity. This Mg(2+)-dependent DNA supercoil relaxation activity was found to be sensitive to camptothecin, a mammalian topoisomerase I inhibitor.


Subject(s)
Camptothecin/pharmacology , DNA Topoisomerases, Type I/metabolism , DNA, Superhelical/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Caspase 3 , Caspases/metabolism , DNA, Superhelical/metabolism , Humans , Mutagenesis, Site-Directed , Recombinant Proteins/metabolism
5.
Nucleic Acids Res ; 31(23): 7032-40, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14627836

ABSTRACT

Single-strand DNA interruptions (SSIs) are produced during the process of base excision repair (BER). Through biochemical studies, two SSI repair subpathways have been identified: a pathway mediated by DNA polymerase beta (Pol beta) and DNA ligase III (Lig III), and a pathway mediated by DNA polymerase delta/epsilon (Pol delta/epsilon) and DNA ligase I (Lig I). In addition, the existence of another pathway, mediated by Pol beta and DNA Lig I, has been suggested. Although each pathway may play a unique role in cellular DNA damage response, the functional implications of SSI repair by these three pathways are not clearly understood. To obtain a better understanding of the functional relevance of SSI repair by these pathways, we investigated the involvement of each pathway by monitoring the utilization of DNA ligases in cell-free extracts. Our results suggest that the majority of SSIs produced during the repair of alkylated DNA bases are repaired by the pathway mediated by Pol beta and either Lig I or Lig III, although some SSIs are repaired by Pol delta/epsilon and Lig I. At a cellular level, we found that Lig III over-expression increased the resistance of cells to DNA-damaging agents, while Lig I over-expression had little effect. Thus, repair pathways mediated by Lig III may have a role in the regulation of cellular sensitivity to DNA-damaging agents.


Subject(s)
DNA Damage , DNA Ligases/metabolism , DNA Polymerase beta/metabolism , DNA Repair , DNA, Single-Stranded/metabolism , Adenosine Monophosphate/metabolism , Alkylation/drug effects , Aphidicolin/pharmacology , Cell Survival/drug effects , Cell-Free System , DNA Damage/drug effects , DNA Ligase ATP , DNA Polymerase II/metabolism , DNA Polymerase III/metabolism , DNA, Single-Stranded/genetics , Humans , Methylnitronitrosoguanidine/pharmacology , Microspheres , Plasmids/genetics , Plasmids/metabolism , Poly-ADP-Ribose Binding Proteins , Xenopus Proteins
6.
J Biol Chem ; 278(37): 35279-85, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12832398

ABSTRACT

Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay that we developed, these two DNA damages are converted into single-strand interruptions by enzymes involved in base excision repair. We showed that these single-strand interruptions are converted into double-strand DNA breaks; however, it was not due to spontaneous denaturation of DNA. Thus, we proposed a model in which DNA polymerase delta/epsilon, by producing repair patches at single-strand interruptions, collide, resulting in double-strand DNA break formation. We tested the model and investigated whether other enzymes/factors are involved in double-strand DNA break formation. Here we report that, instead of DNA polymerase delta/epsilon, flap endonuclease-1 (FEN-1), an enzyme involved in base excision repair, is responsible for the formation of double-strand DNA break in the assay. Furthermore, by transfecting a flap endonuclease-1 expression construct into cells, thus altering their flap endonuclease-1 content, we found an increased number of double-strand DNA breaks after gamma-ray irradiation of these cells. These results suggest that flap endonuclease-1 acts as a double-strand DNA break formation factor. Because FEN-1 is an essential enzyme that plays its roles in DNA repair and DNA replication, DSBs may be produced in cells as by-products of the activity of FEN-1.


Subject(s)
DNA Damage , DNA Repair/physiology , DNA/radiation effects , Endodeoxyribonucleases/metabolism , Animals , Base Sequence , Cell Line , DNA/chemistry , Flap Endonucleases , Gamma Rays , HeLa Cells , Humans , Models, Genetic , Molecular Sequence Data , Oligodeoxyribonucleotides , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL