Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0297364, 2024.
Article in English | MEDLINE | ID: mdl-38442109

ABSTRACT

The compressive strength (CS) of the hollow concrete masonry prism is known as an important parameter for designing masonry structures. In general, the CS is determined using laboratory tests, however, laboratory tests are time-consuming and high-cost. Thus, it is necessary to evaluate and estimate the CS using different methods, for example, machine learning techniques. This study employed Gradient Boosting (GB) to evaluate and predict the CS of hollow masonry prism. The database consists of 102 hollow concrete specimens taken from different previous published literature used for modeling. The output is the CS of the hollow masonry prism, while the inputs include the compressive strength of mortar (fm), the compressive strength of blocks (fb), height-to-thickness ratio (h/t), the ratio of fm/fb. To reduce the overfitting problem, this study used K-Fold cross-validation, then particle swarm optimization (PSO) was employed to obtain the optimum hyperparameter. The GB model then was modeled using the optimum hyperparameters. The results showed that the GB model performed very well in evaluating and predicting the CS of the hollow masonry prims with a high prediction accuracy, the values of R2, RMSE, MAE, and MAPE are 0.977, 0.803 MPa, 0.612 MPa, and 0.036%, respectively. The performance of the GB model in this study outperformed in comparison to six different machine learning models (decision tree, linear regression, random forest regression, ridge regression, Artificial Neural network, and Extreme Gradient Boosting) used in previous studies. The results of sensitivity analysis using SHAP and PDP-2D indicate that the CS is strongly dependent on the fb (with a mean SHAP value of 3.2), h/t (with a mean SHAP value of 1.63), while the fm/fb (with a mean SHAP value of 0.57) had a small effect on the CS. Thus, it can be stated that this research provides a good method to evaluate and predict the CS of the hollow masonry prism, which can bring good knowledge for practical application in this field.


Subject(s)
Algorithms , Neural Networks, Computer , Compressive Strength , Databases, Factual , Knowledge
2.
Ground Water ; 59(5): 745-760, 2021 09.
Article in English | MEDLINE | ID: mdl-33745148

ABSTRACT

Groundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area. Geospatial techniques were used and geo-hydrological data of 130 groundwater wells and 12 topographical and geo-environmental factors were used in the model studies. One-R Attribute Evaluation feature selection method was used for the selection of relevant input parameters for the development of AI models. The performance of these models was evaluated using various statistical measures including area under the receiver operation curve (AUC). Results indicated that though all the hybrid models developed in this study enhanced the goodness-of-fit and prediction accuracy, but MRAB-FT (AUC = 0.742) model outperformed RF-FT (AUC = 0.736), BA-FT (AUC = 0.714), and single FT (AUC = 0.674) models. Therefore, the MRAB-FT model can be considered as a promising AI hybrid technique for the accurate GPM. Accurate mapping of the groundwater potential zones will help in adequately recharging the aquifer for optimum use of groundwater resources by maintaining the balance between consumption and exploitation.


Subject(s)
Groundwater , Artificial Intelligence , Environmental Monitoring , Geographic Information Systems , Water Resources
3.
Materials (Basel) ; 13(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171930

ABSTRACT

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.

4.
Sci Total Environ ; 679: 172-184, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31082591

ABSTRACT

In this study, we developed Different Artificial Intelligence (AI) models namely Artificial Neural Network (ANN), Adaptive Network based Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) for the prediction of Compression Coefficient of soil (Cc) which is one of the most important geotechnical parameters. A Monte Carlo approach was used for the sensitivity analysis of the AI models and input parameters. For the construction and validation of the models, 189 soft clayey soil samples were analyzed. In the models study, 13 input parameters: depth of sample, bulk density, plasticity index, moisture content, clay content, specific gravity, void ratio, liquid limit, dry density, porosity, plastic limit, degree of saturation, and liquidity index were used to obtain one output parameter "Cc". Validation of the models was done using statistical methods such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of determination (R2). Results of the model validation indicate that though performance of all the three models is good but SVM model is the best in the prediction of Cc. The Monte Carlo method based sensitivity analysis results show that out of the 13 input parameters considered for the models study, four parameters namely clay, degree of saturation, specific gravity and depth of sample are the most relevant in the prediction of Cc, and other parameters (bulk density, dry density, void ratio and porosity) are the most insignificant parameters for the prediction of Cc. Removal of these insignificant parameters helped to reduce the dimension of the input space and also model running time, and improved significantly the performance of the AI models. The results of this study might help in selecting the suitable AI models and input parameters for better and quick prediction of the Cc of soil.

SELECTION OF CITATIONS
SEARCH DETAIL