Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 57(31): 4700-4706, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29641191

ABSTRACT

Luciferase-based reporter assays are powerful tools for monitoring gene expression in cells because of their ultrasensitive detection capacity and wide dynamic range. Here we describe the characterization and use of a luciferase reporter enzyme derived from the marine copepod Metridia luciferase family, referred to as TurboLuc luciferase (TurboLuc). To develop TurboLuc, the wild-type luciferase was modified to decrease its size, increase brightness, slow luminescent signal decay, and provide for efficient intracellular expression. To determine the enzyme susceptibility to compound inhibition and judge the suitability of using of TurboLuc as a reporter in screening assays, purified TurboLuc enzyme was screened for inhibitors using two different compound libraries. No inhibitors of this enzyme were identified in a library representative of typical diverse low molecular weight (LMW) compounds using a purified TurboLuc enzyme assay supporting that such libraries will show very low interference with this enzyme. We were able to identify a few inhibitors from a purified natural product library which can serve as useful tools to validate assays using TurboLuc. In addition to the inhibitor profile for TurboLuc we describe the use of this reporter in cells employing miniaturized assay volumes within 1536-well plates. TurboLuc luciferase is the smallest luciferase reporter enzyme described to date (16 kDa), shows bright luminescence and low interference by LMW compounds, and therefore should provide an ideal reporter in assays applied to high-throughput screening.


Subject(s)
Biological Assay/methods , Luciferases/analysis , Amino Acid Sequence , Luminescent Measurements/methods , Molecular Sequence Data
2.
J Biomol Screen ; 19(5): 651-60, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24246376

ABSTRACT

Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment.


Subject(s)
High-Throughput Screening Assays/methods , Biological Assay , Cell Line , Dose-Response Relationship, Drug , False Positive Reactions , Genes, Reporter , Humans , Pilot Projects , Reproducibility of Results , Software
3.
ACS Chem Biol ; 8(5): 1009-17, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23485150

ABSTRACT

Reporter gene assays (RGAs) are commonly used to measure biological pathway modulation by small molecules. Understanding how such compounds interact with the reporter enzyme is critical to accurately interpret RGA results. To improve our understanding of reporter enzymes and to develop optimal RGA systems, we investigated eight reporter enzymes differing in brightness, emission spectrum, stability, and substrate requirements. These included common reporter enzymes such as firefly luciferase (Photinus pyralis), Renilla reniformis luciferase, and ß-lactamase, as well as mutated forms of R. reniformis luciferase emitting either blue- or green-shifted luminescence, a red-light emitting form of Luciola cruciata firefly luciferase, a mutated form of Gaussia princeps luciferase, and a proprietary luciferase termed "NanoLuc" derived from the luminescent sea shrimp Oplophorus gracilirostris. To determine hit rates and structure-activity relationships, we screened a collection of 42,460 PubChem compounds at 10 µM using purified enzyme preparations. We then compared hit rates and chemotypes of actives for each enzyme. The hit rates ranged from <0.1% for ß-lactamase to as high as 10% for mutated forms of Renilla luciferase. Related luciferases such as Renilla luciferase mutants showed high degrees of inhibitor overlap (40-70%), while unrelated luciferases such as firefly luciferases, Gaussia luciferase, and NanoLuc showed <10% overlap. Examination of representative inhibitors in cell-based assays revealed that inhibitor-based enzyme stabilization can lead to increases in bioluminescent signal for firefly luciferase, Renilla luciferase, and NanoLuc, with shorter half-life reporters showing increased activation responses. From this study we suggest strategies to improve the construction and interpretation of assays employing these reporter enzymes.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzymes/genetics , Genes, Reporter/drug effects , Luminescent Measurements/methods , Animals , Cell Line , Drug Evaluation, Preclinical/methods , Enzyme Stability , Enzymes/metabolism , Humans , Luciferases/antagonists & inhibitors , Luciferases/genetics , Luciferases, Firefly/antagonists & inhibitors , Luciferases, Firefly/genetics , Luciferases, Renilla/antagonists & inhibitors , Luciferases, Renilla/genetics , Luminescence , Mutation , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , beta-Lactamase Inhibitors , beta-Lactamases/genetics
4.
J Biomol Screen ; 18(1): 14-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22904199

ABSTRACT

Compound sample preparation and delivery are the most critical steps in high-throughput screening (HTS) campaigns. Historically, several methods of compound delivery to assays have been used for HTS, including intermediate plates with prediluted compounds, assay-ready plates (ARPs) using either preplated dried compound films or nanoliter DMSO spots of compounds, as well as pin tool-delivered compounds. We and others have observed differences in apparent compound potency depending on the compound delivery method. To quantitatively measure compound potency differences due to the chosen delivery methods, we conducted a controlled study using a validated biochemical luciferase assay and compared potencies when compounds were delivered in either ARPs (using acoustic dispensed nanoliter spots) or by pin tool. Here we compare hit rates, confirmation rates, false-positive rates, and false-negative rates between the two delivery methods using the luciferase assay. We compared polystyrene (PS) and cyclic olefin copolymer (COC) plates using both delivery methods and examined whether ARPs stored at 4 °C were superior to those stored frozen at -20 °C. The data show that the choice of compound delivery method to the assay has an effect on the apparent IC(50)'s and that pin tool delivery results in more confirmed hits than preplated compounds, resulting in a lower false-negative rate. However, this effect is minimized through the use of COC plates and by obtaining plates in a "just-in-time" mode. Overall, this report provides guidance on using assay-ready compound plates and has affected the way HTS campaigns are using acoustically dispensed plates in our department.


Subject(s)
Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/instrumentation , Adenosine Triphosphate/chemistry , Benzothiazoles/chemistry , Enzyme Assays/instrumentation , Hydrolysis , Luciferases, Firefly/antagonists & inhibitors , Luciferases, Firefly/chemistry , Reproducibility of Results , Small Molecule Libraries/chemistry , Solutions
5.
J Biomol Screen ; 15(6): 695-702, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20484097

ABSTRACT

Many attractive targets for therapeutic intervention are enzymes that catalyze biological reactions involving small molecules such as lipids, fatty acids, amino acid derivatives, nucleic acid derivatives, and cofactors. Some of the reactions are difficult to detect by methods commonly used in high-throughput screening (HTS) without specific radioactive or fluorescent labeling of substrates. In addition, there are instances when labeling has a detrimental effect on the biological response. Generally, applicable assay methodologies for detection of such reactions are thus required. Mass spectrometry (MS), being a label-free detection tool, has been actively pursued for assay detection in HTS in the past several years. The authors have explored the use of multiparallel liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for high-throughput detection of biochemical reactions. In this report, we describe in detail the assay development and screening with a LC/MS-based system for inhibitors of human diacylglycerol acyltransferase (DGAT1) with a chemical library of approximately 800,000 compounds. Several strategies and process improvements have been investigated to overcome technical challenges such as data variation and throughput. Results indicated that, through these innovative approaches, the LC/MS-based screening method is both feasible and suitable for high-throughput primary screening.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Assays/methods , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , Mass Spectrometry/methods , Chromatography, Liquid , Diacylglycerol O-Acyltransferase/metabolism , High-Throughput Screening Assays , Humans , Reference Standards , Reproducibility of Results , Solvents/chemistry , Time Factors , Titrimetry
6.
Anal Chem ; 79(21): 8207-13, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17902631

ABSTRACT

High-throughput screening (HTS) is an important tool for finding active compounds to initiate medicinal chemistry programs in pharmaceutical discovery research. Traditional HTS methods rely on fluorescent or radiolabeled reagents and/or coupling assays to permit quantitation of enzymatic target inhibition or activation. Mass spectrometry-based high-throughput screening (MS-HTS) is an alternative that is not susceptible to the limitations imposed by labeling and coupling enzymes. MS-HTS offers a selective and sensitive analytical method for unlabeled substrates and products. Furthermore, method development times are reduced without the need to incorporate labels or coupling assays. MS-HTS also permits screening of targets that are difficult or impossible to screen by other techniques. For example, enzymes that are challenging to purify can lead to the nonspecific detection of structurally similar components of the impure enzyme or matrix of membraneous enzymes. The high selectivity of tandem mass spectrometry (MS/MS) enables these screens to proceed with low levels of background noise to sensitively discover interesting hits even with relatively weak activity. In this article, we describe three techniques that we have adapted for large-scale (approximately 175,000 sample) compound library screening, including four-way parallel multiplexed electrospray liquid chromatography tandem mass spectrometry (MUX-LC/MS/MS), four-way parallel staggered gradient liquid chromatography tandem mass spectrometry (LC/MS/MS), and eight-way staggered flow injection MS/MS following 384-well plate solid-phase extraction (SPE). These methods are capable of analyzing a 384-well plate in 37 min, with typical analysis times of less than 2 h. The quality of the MS-HTS approach is demonstrated herein with screening data from two large-scale screens.


Subject(s)
Combinatorial Chemistry Techniques , Pharmaceutical Preparations/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction/instrumentation , Solid Phase Extraction/methods , Tandem Mass Spectrometry/instrumentation
7.
Neurobiol Dis ; 14(1): 32-42, 2003 Oct.
Article in English | MEDLINE | ID: mdl-13678664

ABSTRACT

Clinical studies suggest a relationship between folate deficiency and neurological and disorders including Alzheimer's disease (AD). To investigate mechanisms underlying this association, we examined the consequences of folate deprivation on neuronal cultures. Culturing embryonic cortical neurons and differentiated SH-SY-5Y human neuroblastoma cells in folate-free medium induced neurodegenerative changes characteristic of those observed in AD, including increased cytosolic calcium, reactive oxygen species (ROS), phospho-tau and apoptosis. In accord with clinical studies, generation of the neurotoxic amino acid homocysteine (HC) was likely to contribute to these phenomena, since (1) a significant increase in HC was detected following folate deprivation, (2) addition of the inhibitor of HC formation, 3-deazaadenosine, both prevented HC formation and eliminated the increase in ROS that normally accompanied folate deprivation, (3) direct addition of HC in the presence of folate induced the neurotoxic effects that accompanied folate deprivation, and (4) an antagonist of NMDA channels that blocks HC-induced calcium influx also blocked calcium influx following folate deprivation. Folate deprivation decreased the reduced form of glutathione, indicating a depletion of oxidative buffering capacity. This line of reasoning was supported by an increase in glutathione and reduction in ROS following supplementation of folate-deprived cultures with the cell-permeant glutathione precursor, N-acetyl-L-cysteine, or vitamin E. Folate deprivation potentiated ROS and apoptosis induced by amyloid-beta, while folate supplementation at higher concentrations prevented generation of ROS by amyloid-beta, suggesting that folate levels modulate the extent of amyloid-beta neurotoxicity. These findings underscore the importance of folate metabolism in neuronal homeostasis and suggest that folate deficiency may augment AD neuropathology by increasing ROS and excitotoxicity via HC generation.


Subject(s)
Folic Acid Deficiency/metabolism , Homocysteine/biosynthesis , Nerve Degeneration/metabolism , Neurons/metabolism , Oxidative Stress/physiology , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Humans , Mice , Nerve Degeneration/pathology , Neurons/pathology , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
8.
J Neurosci Res ; 70(5): 694-702, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12424737

ABSTRACT

Homocysteine (HC) is a neurotoxic amino acid that accumulates in several neurological disorders including Alzheimer's disease (AD). We examined the consequences of treatment of cultured murine cortical neurons with HC. Homocysteine-induced increases in cytosolic calcium, reactive oxygen species, phospho-tau immunoreactivity and externalized phosphatidyl serine (indicative of apoptosis). Homocysteine-induced calcium influx through NMDA channel activation, which stimulated glutamate excitotoxicity, as evidenced by treatment with antagonists of the NMDA channel and metabotropic glutamate receptors, respectively. The NMDA channel antagonist MK-801 reduced tau phosphorylation but not apoptosis after HC treatment, suggesting that HC-mediated apoptosis was not due to calcium influx. Apoptosis after HC treatment was reduced by co-treatment with 3-aminobenazmidine (3ab), an inhibitor of poly-ADP-ribosome polymerase (PARP), consistent with previous reports that ATP depletion by PARP-mediated repair of DNA strand breakage mediated HC-induced apoptosis. Treatment with 3ab did not reduce tau phosphorylation, however, therefore hyperphosphorylation of tau may not contribute to HC-induced apoptosis under these conditions. Inhibition of mitogen-activated protein kinase by co-treatment with the kinase inhibitor PD98059 inhibited tau phosphorylation but not apoptosis after HC treatment. HC accumulation reduces cellular levels of S-adenosyl methionine (SAM); co-treatment with SAM reduced apoptosis, suggesting that inhibition of critical methylation reactions may mediate HC-induced apoptosis. These findings indicate that HC compromises neuronal homeostasis by multiple, divergent routes.


Subject(s)
DNA Damage , Glutamic Acid/metabolism , Homocysteine/toxicity , Neurons/drug effects , Neurons/metabolism , Protein Kinases/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Dose-Response Relationship, Drug , Enzyme Activation , Mice , Mitogen-Activated Protein Kinases/metabolism , Neurons/cytology , Neurotoxins , Oxidative Stress , Phosphorylation , Receptors, N-Methyl-D-Aspartate/metabolism , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...