Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 351: 124115, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718963

ABSTRACT

Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.

2.
Chemosphere ; 354: 141678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485003

ABSTRACT

Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to µg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid , Ecosystem , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations
3.
Sci Total Environ ; 904: 166649, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37660815

ABSTRACT

Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 µm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.


Subject(s)
Microplastics , Plastics , Humans , Animals , Plastics/toxicity , Environmental Pollution , Atmosphere , Risk Reduction Behavior
4.
Mar Pollut Bull ; 194(Pt A): 115417, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37639864

ABSTRACT

This study explored the potential for predicting the quantities of microplastics (MPs) from easily measurable parameters in peatland sediment samples. We first applied correlation and Bayesian network analysis to examine the associations between physicochemical variables and the number of MPs measured from three districts of the Long An province in Vietnam. Further, we trained and tested three machine learning models, namely Least-Square Support Vector Machines (LS-SVM), Random Forest (RF), and Long Short-Term Memory (LSTM) to predict the composite quantities of MPs using physicochemical parameters and sediment characteristics as predictors. The results indicate that the quantity of MPs and characteristics such as color and shape in the samples were mostly influenced by pH, TOC, and salinity. All three predictive models demonstrated considerable accuracies when applied to the testing dataset. This study lays the groundwork for using basic physicochemical variables to predict MP pollution in peatland sediments and potentially locations and environments.


Subject(s)
Microplastics , Plastics , Bayes Theorem , Environmental Pollution , Machine Learning
5.
J Environ Manage ; 342: 118191, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210821

ABSTRACT

This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.


Subject(s)
Composting , Environmental Pollutants , Soil Pollutants , Soil , Plastics , Soil Pollutants/analysis , Charcoal
6.
Sci Total Environ ; 865: 161128, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587674

ABSTRACT

The odor emission such as ammonia (NH3) and hydrogen sulfide (H2S) during the composting process is a severe problem that adversely affects the environment and human health. Therefore, this study aimed to (1) evaluate the variation of physicochemical characteristics during the co-composting of food waste, and sawdust mixed biochar; (2) assess the efficiency of biochar-composting combined amendment materials for reducing odor emissions and their maturity. The raw materials including food waste (FW), straw dust (SD), and biochar (BC) were prepared and homogeneously mixed with the weight ranging from 120.0 kg to 135.8 kg with five treatments, BC0 (Control), BC1 (5 % biochar), BC2 (5 % distilled water washed biochar), BC3 (10 % biochar), BC4 (20 % biochar). Adding biochar could change physicochemical properties such as temperature, moisture, and pH during composting. The results indicated applying biochar-composting covering to minimalized NH3 and H2S aided by higher porous structure and surface functional groups. Among trials, biochar 20 % obtained the lowest NH3 (2 ppm) and H2S (3 ppm) emission on day 16 and stopping their emission on day 17. The NH3/NH4+ adsorption on large specific surface areas and highly porous micro-structure of biochar lead to reduced nitrogen losses, while nitrification (NH4+ ➔ NO2- ➔ NO3-) may also contribute to nitrogen retention. The H2S concentration decreased with increasing the biochar proportion, suggesting that biochar could reduce the H2S emission. Correlation analysis illustrated that temperature, moisture, and oxygen are the most critical factors affecting H2S and NH3 emissions (p <0.05). The physicochemical properties and seed germination index indicated that the compost was mature without phytotoxicity. These novelty findings illustrated that the biochar amendment is an effective solution to reduce odor emission and enhances the maturity of compost mixture, which is promising to approach in real-scale conditions and could apply in agricultural fields.


Subject(s)
Composting , Refuse Disposal , Humans , Food , Odorants/prevention & control , Soil/chemistry , Manure , Charcoal/chemistry , Nitrogen/analysis
7.
Environ Res ; 220: 115190, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36587718

ABSTRACT

This study aims to investigate the distribution and ecological risk assessment of microplastics (MPs) in peatland areas located in Long An province, Vietnam's Mekong Delta. In general, polyvinyl chloride (60.7%), polyethylene (25.8%), and polypropylene (11.9%) were the most abundant polymers determined in the thirty sediment samples. The hazard index (HI) remarked a level of III for MPs contamination in Tan Thanh and Thanh Hoa districts. The pollution load index (PLI) and potential ecological risk index (RI) indicated that the contamination risk of MPs polymer types in the studied sites is relatively high. According to PLI values, MPs levels of peatlands in Tan Thanh and Thanh Hoa are high and moderate, respectively, while the peatland sediments in Duc Hue district are less contaminated. Furthermore, ecological risk indexes in the peatland areas were relatively high, with PLIoverall (level III); HIoverall (level V), and RIoverall (extreme danger). Hence, this study proposed a SWOT framework for challenges of MPs pollution in order to manage peatlands appropriately and minimize ecological risks. As a result, several practical strategies and appropriate approaches have been recommended to reduce microplastics towards a circular economy. These findings provide the initial quantitative assessment insights into hazard levels and ecological impacts of MPs in Vietnam's Mekong Delta peatlands.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Vietnam , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers , Geologic Sediments
8.
Environ Pollut ; 316(Pt 2): 120640, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403881

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.


Subject(s)
Brassica , Composting , Diethylhexyl Phthalate , Refuse Disposal , Humans , Germination , Diethylhexyl Phthalate/toxicity , Seeds
9.
Chemosphere ; 308(Pt 3): 136455, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116626

ABSTRACT

Microplastic pollution is becoming a global challenge due to its long-term accumulation in the environment, causing adverse effects on human health and the ecosystem. Sludge discharged from wastewater treatment plants (WWTPs) plays a critical role as a carrier and primary source of environmental microplastic contamination. A significantly average microplastic variation between 1000 and 301,400 particles kg-1 has been reported in the sludge samples. In recent years, advanced technologies have been successfully applied to address this issue, including adsorption, advanced oxidation processes (AOPs), and membrane bioreactors (MBRs). Adsorption technologies are essential to utilizing novel adsorbents (e.g., biochar, graphene, zeolites) for effectively removing MPs. Especially, the removal efficiency of polymer microspheres from an aqueous solution by Mg/Zn modified magnetic biochars (Mg/Zn-MBC) was obtained at more than 95%. Also, advanced oxidation processes (AOPs) are widely applied to degrade microplastic contaminants, in which photocatalytic by semiconductors (e.g., TiO2 and ZnO) is a highly suitable approach to promote the degradation reactions owing to strongly hydroxyl radicals (OH*). Biological degradation-aided microorganisms (e.g., bacterial and fungal strains) have been reported to be suitable for removing microplastics. Yet, it was affected by biotic and abiotic factors of the environmental conditions (e.g., pH, light, temperature, moisture, bio-surfactants, microorganisms, enzymes) as well as their polymer characteristics, i.e., molecular weight, functional groups, and crystallinity. Notably, membrane bioreactors (MBRs) showed the highest efficiency in removing up to 99% microplastic particles and minimizing their contamination in sewage sludge. Further, MBRs illustrate the suitability for treating high-strength compounds, e.g., polymer debris and microplastic fibers from complex industrial wastewater. Finally, this study provided a comprehensive understanding of potential adverse risks, transportation pathways, and removal mechanisms of microplastic, which full-filled the knowledge gaps in this field.


Subject(s)
Graphite , Zeolites , Zinc Oxide , Ecosystem , Humans , Microplastics , Plastics , Sewage/chemistry , Surface-Active Agents , Wastewater/chemistry
10.
Chemosphere ; 307(Pt 4): 135989, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35988768

ABSTRACT

Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.


Subject(s)
Composting , Phthalic Acids , Soil Pollutants , Biodegradation, Environmental , Dibutyl Phthalate , Esters , Plastics , Soil , Soil Pollutants/analysis , Technology
11.
Sci Total Environ ; 844: 157066, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35787905

ABSTRACT

Vietnam is known as one of the high plastic consumption countries in Southeast Asia. This study initially determined characteristics of microplastics (MPs) including morphology, polymer type, and abundance at peatland areas in Mekong Delta in Vietnam. The MPs level was found with an average abundance of 192.3 ± 261.3 items kg-1. In details, those values at Thanh Hoa, Duc Hue, and Tan Thanh were observed at 57.0 ± 110.4 items kg-1, 7.0 ± 10.6 items kg-1, and 513.0 ± 186.9 items kg-1, respectively. The results indicated that MP particle contaminations in peatland sediments are significant among sampling sites (p < 0.001). Also, FT-IR analysis indicated that polyvinyl chloride is the primary polymer (46.2 %), followed by polyethylene (20.9 %), and polypropylene (9.2 %) in peatland samples and their composition varies in different regions significantly. The fragments (67.0 %) and films (24.6 %) were the most common shapes, followed by fibers (7.6 %) and foams (0.9 %). Small MPs with particle size (300-1000 µm) was the most abundant in sediment samples. Moreover, the most popular colors observed in peatland sediments were aqua (26.6 %), white (25.6 %), blue (25.4 %), and green (12.7 %). Our findings indicated that anthropogenic factors and environmental processes that caused the transformation/transportation and accumulation, leading to rising MP contaminant concerns in peatland areas in Mekong Delta in Vietnam, mainly in terms of the spatial distribution of MPs. In summary, this study provided an in-depth knowledge of microplastic pollution in peatland areas, which is crucial for the building sustainable development strategies in these areas.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Plastics/analysis , Spectroscopy, Fourier Transform Infrared , Vietnam , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 299: 134488, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35385764

ABSTRACT

Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field. Moreover, the research direction to fill knowledge gaps was proposed and highlighted. Results demonstrated the commonly referenced conditions during composting mixed biochar should be reached such as pH (6.5-7.5), moisture (50-60%), initial C/N ratio (20-25:1), biochar doses (1-20% w/w), improved oxygen content availability, enhanced the performance and humification, accelerating organic matter decomposition through faster microbial growth. Biochar significantly decreased GHGs and odorous emissions by adding a 5-10% dosage range due to its larger surface area and porosity. On the other hand, with high exchange capacity and interaction with organic matters, biochar enhanced the composting performance humification (e.g., formation humic and fulvic acid). Biochar could extend the thermophilic phase of composting, reduce the pH value, NH3 emission, and prevent nitrogen losses through positive effects to nitrifying bacteria. The surfaces of the biochar particles are partly attributed to the presence of functional groups such as Si-O-Si, OH, COOH, CO, C-O, N for high cation exchange capacity and adsorption. Adding biochars could decrease NH3 emissions in the highest range up to 98%, the removal efficiency of CH4 emissions has been reported with a wide range greater than 80%. Biochar could absorb volatile organic compounds (VOCs) more than 50% in the experiment based on distribution mechanisms and surface adsorption and efficient reduction in metal bioaccessibilities for Pb, Ni, Cu, Zn, As, Cr and Cd. By applicating biochar improved the compost maturity by promoting enzymatic activity and germination index (>80%). However, physico-chemical properties of biochar such as particle size, pore size, pore volume should be clarified and its influence on the composting process evaluated in further studies.


Subject(s)
Composting , Greenhouse Gases , Charcoal , Manure , Nitrogen/analysis , Soil/chemistry
13.
Chemosphere ; 300: 134514, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398076

ABSTRACT

Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.


Subject(s)
Composting , Ammonia , Nitrification , Nitrites , Nitrogen , Nitrogen Cycle , Nitrous Oxide/analysis , Soil/chemistry
14.
J Hazard Mater ; 421: 126767, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34396961

ABSTRACT

Dioxin-contaminated soil has attracted worldwide attention due to its potential negative impacts on human health and the ecosystem. Thus, technological development aiming at high treatment efficiency and low cost for dioxin-contaminated soil is largely needed. In this review, approximately 200 documents were involved to summarize up-to-date scientific achievements of soil washing technology for the remediation of dioxin-contaminated soil. The mechanisms, advantages, and limitations of physical separation techniques (e.g. mechanical stirring, mechanical shaking, ultrasonication, and froth flotation) and washing solutions (e.g. organic solvents, edible oils, and surfactants) used for chemical extraction were comprehensively reviewed. Froth flotation is very promising for field-scale soil washing, whereas organic solvents show high removal efficiencies (up to 99%) of dioxins from contaminated soil. Further, the combination of physical separation and chemical extraction can help enhance dioxin removal efficiency (from 1.5 to 2 times), reducing energy consumption and cost (about 2 times). Among available remediation technologies for dioxin-contaminated soil, soil washing is truly promising since it has shown high removal efficiency (66-99% different remediation scales) with reasonable cost (46 - 250 USD per metric ton). However, the washed solution and volatile organic compounds generated during the process remain a concern and should be addressed in future research.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Soil Pollutants , Ecosystem , Humans , Polychlorinated Dibenzodioxins/analysis , Soil , Soil Pollutants/analysis
15.
Environ Sci Pollut Res Int ; 29(9): 12465-12472, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33660174

ABSTRACT

This study investigated the water quality parameters (dissolved oxygen, electrical conductivity, salinity, pH, and temperature) and the mass flux of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in five years (2015-2019) of the Houjing River. The river flows through a heavily-industrialized zone in Kaohsiung City in southern Taiwan. The surface water was sampled 4 times per year from five sampling locations: upstream sites (H1 and H2), industrial wastewater discharge point sites (H3 and H4), and downstream (H5). Our findings show that the water quality parameters improved in the study period, especially dissolved oxygen. However, some parameters, such as electrical conductivity (mean = 1152.50 ± 414.21 µS cm-1), were still higher than the Taiwan water quality irrigation standards. The heavy metal pollution was investigated in the aspect of mass fluxes and sources contribution. The spatial variation of the total heavy metal mass flux increased gradually from upstream to downstream, with H5 having the highest total mass flux of 74.1 kg d-1. H2, located near an industrial zone, had a total mass flux of 33.7 kg d-1 and contributed to the most Ni, Cr, Pb, Zn, and Hg fluxes. This study indicates that the water quality improvements observed are still not enough to meet the regulations. Stricter enforcement is required as well as further investigation to identify any illegal pollution sources.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Quality
16.
Environ Pollut ; 285: 117414, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34049136

ABSTRACT

The human health risks caused by heavy metal contamination (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in the surface water of the Houjing River, the most contaminated river in southern Taiwan, were assessed in this study. Firstly, heavy metal contamination was evaluated by the contamination factors (CF) and the metal indexes (MI). Secondly, the human health risks due to heavy metal contamination were simulated using the Adaptive Risk Assessments Modeling System (ARAMS) through three scenarios; fish ingestion, dermal water contact, and incidental water ingestion during swimming. The hazard quotient (HQ) and the hazard index (HI) were used to evaluate non-carcinogenic risks, while carcinogenic risks were estimated by the lifetime cancer incidence risk index (CR) and the cumulative cancer risk (CCR). The results showed that the synergistic contamination of heavy metals in the surface water was severe (MI = 12.4), with the highest contribution from Cu, Ni, and Pb. Copper had the highest non-carcinogenic risk at the "adverse effect" level, while Ni and Cr had the highest carcinogenic risk at an "unacceptable" level. In addition, the cumulative risks of fish ingestion (HIFI = 6.75 and CCRFI = 1.25E-03) were significantly higher than those of the swimming scenarios (HI(DC + WI) = 1.94E-03 and CCR(DC + WI) = 9.32E-08). The results from this study will be beneficial for immediate and future contamination control measures and human health management plans for this study area. This study has also demonstrated the effectiveness of using ARAMS in human health risk assessment.


Subject(s)
Metals, Heavy , Rivers , Animals , China , Environmental Monitoring , Humans , Industry , Metals, Heavy/analysis , Risk Assessment
17.
Chemosphere ; 265: 129064, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33248736

ABSTRACT

The overall dioctyl terephthalate (DOTP) degradation efficiency during food waste composting was 98%. The thermophilic phases contributed to 76% of the overall degradation efficiency, followed by the maturation phase (22%), then the mesophilic phase (0.7%). The thermophilic phase had the highest specific degradation rate of 0.149 d-1. The progression of the bacterial community during the composting process was investigated to understand DOTP biodegradation. The results showed that the bacterial richness and the alpha diversity of the DOTP composting were similar to a typical composting process, indicating that the high concentration of DOTP did not hinder the thriving and evolution of the bacterial community. Additionally, Firmicutes was the most dominant at the phylum level, followed by Proteobacteria and Bacteroidetes. Bacilli was the most dominant class (70%) in the mesophilic phase, with the abundance decreasing thereafter in the thermophilic and maturation phase. Moreover, Lactobacillus sp. was the dominant species at the beginning of the experiment, which was probably responsible for DOTP biodegradation. The high removal efficiency observed in the maturation phase indicates that degradation occurs in all the composting phases, and that compost can be used to enhance natural attenuation. These findings provide a better understanding of the bacterial communities during biodegradation of DOTP and plasticizers via food waste composting and should facilitate the development of appropriate green bioremediation technologies.


Subject(s)
Composting , Refuse Disposal , Food , Phthalic Acids , Soil , Soil Microbiology
18.
Sci Total Environ ; 753: 142250, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33207468

ABSTRACT

This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.


Subject(s)
Composting , Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , Soil , Soil Microbiology
19.
Environ Sci Pollut Res Int ; 27(28): 34770-34780, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32016863

ABSTRACT

One of the most industrially affected rivers in Taiwan, the Houjing River, was studied in this research. The water and sediment samples were collected at five locations to measure the concentration of eight metals (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn). In order to assess the heavy metal contamination and its adverse biological effect, the heavy metal pollution index (HPI), the degree of contamination index (DC), the contamination factor (CF), the index of geo-accumulation (Igeo), and hazard quotients (HQs) were employed. The results showed that the Houjing River's water and sediment were contaminated with heavy metals. The annually averaged values of HPI (128.3) and DC (21.3) indicate that the water is unsafe for potable use and the sediment contamination level is at considerable degree of contamination. CF and Igeo calculation show that Zn, Cu, and Cd are the three main metals contributing to heavy metal contamination in sediment. Evaluation of adverse biological effects suggests that Zn, Cu, and Ni are the major metals that cause adverse effects on organisms. This study provides an overview of the synergistic heavy metal contamination degree of the Houjing River and its adverse biological effects, which should be a reliable reference for future contamination control and management plans.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments , Risk Assessment , Rivers , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...