Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cureus ; 16(5): e60746, 2024 May.
Article in English | MEDLINE | ID: mdl-38903303

ABSTRACT

Telepharmacy is receiving significant attention as an innovative approach. The objective of this study is to assess the needs and evaluate the impact of telepharmacy applications in drug consultations at Thu Duc City Hospital. We used a cross-sectional research design and conducted a survey with the participation of leaders of the Faculty of Pharmacy, clinical pharmacists, dispensing pharmacists, and patients or their caregivers who receive medication at the Pharmacy of Thu Duc Hospital. We deployed a telepharmacy application for consulting on drug use and surveyed the satisfaction of patients/family members with the telepharmacy model. 60.3% of survey subjects expressed a desire to receive drug use consultations through telepharmacy if the hospital were to offer this service. One hundred percent of the pharmacists at the pharmacy and the hospital's leadership believe that telepharmacy can address patient consultation needs and improve the current physical facilities in the dispensing area. Over 90% of telepharmacy users reported being satisfied or very satisfied with the service. Telepharmacy has garnered the attention of patients, their caregivers, and the medical staff at the Outpatient Pharmacy of Thu Duc Hospital. The majority of users are satisfied with the drug use consultation service provided by telepharmacy. By expanding the good results of Thu Duc Hospital to other hospitals, more patients across Vietnam can benefit from this innovative approach.

2.
ChemistryOpen ; : e202400120, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940235

ABSTRACT

Metal corrosion is a challenge for the world with heavy impacts on the economy. Study on the development of effectiveness anticorrosion additives is a promising strategery for the protection industry. This research focuses on the modification of hydrotalcite Mg-Al (HT) loading tannic acid (TA) with 3-(trimethoxy silyl) propyl methacrylate organo-silane (TMSPM) for applicating as an anti-corrosion additive for epoxy coating on the steel substrate. The suitable ratio of HT and modifiers was investigated and the suitable content of modified HT in epoxy matrix was found based on mechanical properties of the epoxy-based coating. The characteristics of modified HT were assessed through infrared (IR) spectroscopy, X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), thermal gravimetry analysis (TGA), water contact angle (WCA), dynamic light scattering (DLS). Detailly, HT-TA3-S3 shows good stability in distilled water when HT/TA was modified with TMSPM which makes Zeta potential decreases significantly. Besides, SEM analysis presented HT-TA-S has a cylindrical shape about of 500 nm. Moreover, the crystallite size of HT/TA after being modified by TMSPM decreases sharply. All of these prove successfully synthesize HT loading TA with modified TMSPM. Water contact angle (WCA) decreases in case of loading TA and increases in case of modifying with TMSPM (WCA changed from HT (116.3°) to HT-TA (102.4°) and HT-TA-S (120.1°) which indicates the increased hydrophobicity of the sample. The obtained results showed HT/TA was modified successfully with TMSPM. The modification affected the size distribution and surface properties of HT nanoparticles while it did not impact on the crystal structure of HT. After incorporating modified HT/TA into the epoxy coating, the adhesion of coating to steel substrate was improved significantly. Consequently, the adhesion of epoxy/3 wt. % modified HT/TA coating was increased 3 times as compared to epoxy neat (from 0.76 MPa to 2.77 MPa). In addition, the relative hardness and gloss retention of epoxy/3 wt. % modified HT/TA coating reached the maximum values as compared to the others. Owing to salt spraying results, the epoxy/3 wt. % modified HT/TA exhibited an excellent anticorrosion ability for the steel substrate. All the above results show the potential of HT nanoparticles loading TA modified with TMSPM as anticorrosive additives for protective coatings on steel substrates.

3.
Chem Asian J ; 19(14): e202400162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38705851

ABSTRACT

Hydrotalcite-silver (HT-Ag) nanoparticles have been involved in various daily crucial applications, such as antibacterial, photocatalytic, adsorption, etc. There are many approaches to synthesizing silver nanoparticles (AgNPs) decorated on hydrotalcite (HT) surface and the most used approach is using a strong reducing agent. Thus, affordable but effective "green" reducing agents - Syzygium nervosum leaf extract, are taken into account in this work to solve several issues related to chemical reducing agents. This work aimed to assess the effect of Syzygium nervosum leaf extract as a reducing agent for green synthesis of AgNPs on HT through an optimizing process using response surface methodology (RSM) and the Box-Benken model. The optimal conditions for the synthesis of AgNPs on HT include a reaction time of 6.15 hours, a reaction temperature of 50 °C, and the ratio of diluted Syzygium nervosum leaf extract to reduce AgNO3 of 50.37 mL/mg. Under the optimal conditions, the yield of the reduction reaction reached 77.54 %, close to the theoretical value of 76.97 %. The optimization model was suitable for the experiment data. Besides, the morphology, density, and characteristics of AgNPs on the surface of HT layers have been determined by using Ultraviolet-visible spectroscopy, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), selected area diffraction, X-ray diffraction, Dynamic light scattering (DLS), Infrared (IR) spectroscopy, Fluorescence emission spectroscopy (FE), Brunauer-Emmett-Teller (BET) methods. The spherical AgNPs were synthesized successfully on the surface of HT with the average particle size of 13.0±1.1 nm. Interestingly, HT-Ag hybrid materials can inhibit strongly the growth of E. coli, S. aureus as well as two antibiotic resistance bacterial strains, P. stutzeri B27, and antibiotic resistance E. coli. Especially, the antibacterial activity quantification and durability of the HT-Ag hybrid materials were also tested. Overall, the HT-Ag hybrid materials are very promising for application in material science and biomedicine fields.


Subject(s)
Aluminum Hydroxide , Green Chemistry Technology , Magnesium Hydroxide , Metal Nanoparticles , Plant Extracts , Silver , Syzygium , Silver/chemistry , Metal Nanoparticles/chemistry , Syzygium/chemistry , Magnesium Hydroxide/chemistry , Plant Extracts/chemistry , Aluminum Hydroxide/chemistry , Reducing Agents/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Particle Size , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Surface Properties
4.
ChemistryOpen ; : e202300274, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426697

ABSTRACT

Nanomaterials based on metal oxides, especially Cu2 O, have received much attention in recent years due to the many unique properties of the surface plasmon resonance they provide. The report presented the co-precipitation method, a simple preparation method to produce Cu2 O oxide particles. In addition, to improve the unique antibacterial properties of Cu2 O, a proposed method is to attach Ag nanoparticles to the surface of Cu2 O particles. The Cu2 O and Cu2 O-Ag particles were synthesized based on redox reactions using ascorbic acid (LAA) as a reducing agent. Moreover, in this experiment, two surfactants, polyethylene glycol 6000 (PEG 6000) and sodium dodecyl sulfate (SDS), were added during the manufacturing process to create particle samples and particle combinations with better properties than the original sample. Changes in the characteristics and properties of particle samples are determined by many different physical and chemical methods such as ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (IR), noise X-ray radiation (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Finally, the activity against bacteria, including E. coli and S. aureus, was also tested using the agar well diffusion method to determine the zone of inhibition. The results improved the particle size value, which decreased by half to 200 nm when two additional surfactants, PEG and SDS, were added. In addition, the antibacterial ability has also been shown to increase significantly when the diameter of the bacterial inhibition zone increased significantly, reaching values of 20 mm (Cu2 O/Ag/SDS) and 32 mm (Cu2 O/Ag/PEG) for the E. coli bacterial strain. The initial test sample was only about 14 mm in size. The S. aureus bacterial strain also had a similar improvement trend after adding Ag to the Cu2 O surface with the appearance of two surfactants, SDS and PEG. The inhibition zone diameter values reached the optimal value at 36 mm in the Cu2 O/Ag/PEG particle combination sample compared to only the initial 26 mm in the Cu2 O particle sample. Finally, the particle samples are added to the acrylic emulsion paint film to evaluate the changes. Positive results were obtained, such as improvement in adhesion (1.22 MPa), relative hardness (240/425), and sand drop resistance (100 L/mil) in the Cu2 O/Ag/PEG particle combination sample, which showed the correctness and accuracy of the research.

5.
Biomed Mater ; 19(3)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38537280

ABSTRACT

The biomaterials based on chitosan andEclipta prostrataL. extract have been prepared by microemulsion method and solution method (with and without sodium tripolyphosphate (STPP) as a cross-linking agent). The main component inEclipta prostrataL. extract is flavonoid groups. The structure of the chitosan/extract biomaterials was studied by infrared spectroscopy. The chitosan/extract biomaterial using STPP cross-linker appeared an absorption band at 1152 cm-1attributed to the vibrations of C-O-P bonds, which proved that chitosan has crosslinked with STPP. The morphology of the biomaterials was investigated by the dynamic light scattering technique and field emission scanning electron microscopy. The obtained results showed that the particle size of the chitosan/extract biomaterials prepared by microemulsion method and solution method with STPP ranged from 68.06 nm to 1484 nm, with an average particle size of 304.9-1019 nm. The microemulsion method produced biomaterials with much smaller average particle size than the solution method using cross-linkers. The hemostatic ability of the biomaterials was better than that of the control sample based on the time of blood clotting formation and glomerular aggregation ability. The sample with the ratio ofE. prostrataL. extract: chitosan of 1:30 had the lowest hemostasis time (6 min 46 s) and its glomerular aggregation rate after 5 min was 13.05%. This indicated that the biomaterials based on chitosan andE. prostrataL. extract are promising for application in biomedicine as hemostatic materials.


Subject(s)
Chitosan , Hemostatics , Chitosan/chemistry , Biocompatible Materials/chemistry , Hemostasis , Blood Coagulation
6.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446843

ABSTRACT

Alginate/lignin is a synthetic polymer rich in biological activity and is of great interest. Alginate is extracted from seaweed and lignin is extracted from corn stalks and leaves. In this paper, antioxidant activities of alginate/lignin were evaluated, such as total antioxidant activity, reducing power activity, DPPH free radical scavenging activity, and α-glucosidase inhibition activity. Anticancer activity was evaluated in three cell lines (Hep G2, MCF-7, and NCI H460) and fibroblast. Physico-chemistry characteristics of alginate/lignin were determined through FTIR, DSC, SEM_EDS, SEM_EDS mapping, XRD, XRF, and 1H-NMR. The acute toxicity of alginate/lignin was studied on Swiss albino mice. The results demonstrated that alginate/lignin possessed antioxidant activity, such as the total antioxidant activity, and reducing power activity, especially the α-glucosidase inhibition activity, and had no free radical scavenging activity. Alginate/lignin was not typical in cancer cell lines. Alginate/lignin existed in a thermally stable and regular spherical shape in the investigated thermal region. Six metals, three non-metals, and nineteen oxides were detected in alginate/lignin. Some specific functional groups of alginate and lignin did not exist in alginate/lignin crystal. Elements, such as C, O, Na, and S were popular in the alginate/lignin structure. LD0 and LD100 of alginate/lignin in mice were 3.91 g/kg and 9.77 g/kg, respectively. Alginate/lignin has potential for applications in pharmaceutical materials, functional foods, and supporting diabetes treatment.


Subject(s)
Antioxidants , Seaweed , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Lignin/pharmacology , Alginates/pharmacology , Alginates/chemistry , alpha-Glucosidases , Seaweed/chemistry
7.
Sci Rep ; 13(1): 10629, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391450

ABSTRACT

Modern communication and navigation systems are increasingly relying on atomic clocks. As timing precision requirements increase, demands for lower SWaP (size, weight, and power) clocks rise. However, it has been challenging to break through the general trade-off trend between the clock stability performance and SWaP. Here we demonstrate micro mercury trapped ion clock (M2TIC) prototypes integrated with novel micro-fabricated technologies to simultaneously achieve high performance and low SWaP. The M2TIC prototypes could reach the [Formula: see text]-stability level in 1 day with a SWaP of 1.1 L, 1.2 kg, and under 6 W of power. This stability level is comparable to the widely used rack-mount Microchip 5071A cesium frequency standard. These standalone prototypes survived regular commercial shipping across the North American continent to a government laboratory, where their performance was independently tested. The M2TIC sets a new reference point for SWaP and performance and opens opportunities for high-performance clocks in terrestrial and space applications.


Subject(s)
Cesium , Mercury , Communication , Government , Ions
8.
Des Monomers Polym ; 26(1): 171-181, 2023.
Article in English | MEDLINE | ID: mdl-37313390

ABSTRACT

In this work, polypyrrole-based nanocomposites doped with graphene oxide, molybdate, and salicylate (PPy/GO/Mo/Sal) were synthesized via in situ electrochemical polymerization to enhance the anti-corrosion protection performance of polymer coatings. The morphology and structures of the coatings were characterized by SEM, EDX, FTIR, Raman spectroscopy, and XRD. The protection abilities of coatings against corrosion were investigated in 0.1 M NaCl solution with EIS potentiodynamic polarization, salt spray test, and open-circuit potential (OCP) measurements. The results showed that with the presence of both molybdate/salicylate and GO in the PPy matrix, the nanocomposite coating exhibited an excellent protection ability against corrosion for low-carbon steel, better than that with only GO as filler. Compared to the nanocomposites doped with only salicylate or salicylate/GO, the one doped with both molybdate/salicylate and GO exhibited the longest protection plateau (ca. 100 h) on the OCP-time curves with some fluctuation points known as the self-healing action of molybdate dopant. It also resulted in a decrease in the corrosion current (Tafel plots), a higher impedance (Bode plot), and a better protection performance in salt spray tests. In this case, the anti-corrosion ability of the coatings was provided through a barrier and self-healing mechanism.

9.
Cureus ; 15(4): e37267, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37162770

ABSTRACT

Diabetes mellitus is a chronic metabolic disease relating to steady hyperglycemia resulting from the impairment of the endocrine and non-endocrine systems. Many new drugs having varied targets were discovered to treat this disease, especially type 2 diabetes. Among those, α-glucosidase inhibitors showed their effects by preventing the digestion of carbohydrates through their inhibition against α-amylase and α-glucosidase. Recently, chalcones have attracted considerable attention as they have a simple structure, are easily synthesized as well as have a variety of derivatives. Some reports suggested that chalcone and its derivates could inhibit α-amylase and α-glucosidase. This narrative review provides a comprehensive evaluation of the inhibition of chalcone and its derivatives against α-amylase and α-glucosidase that were reviewed and reported in published scientific articles. Twenty-eight articles were reviewed after screening 207 articles found in four databases, including PubMed, Google Scholar, VHL (Virtual Health Library), and GHL (Global Health Library). This review presented the inhibitory effects of varied chalcones, including chalcones with a basic structural framework, azachalcones, bis-chalcones, chalcone oximes, coumarin-chalcones, cyclohexane chalcones, dihydrochalcones, and flavanone-coupled chalcones. Many of these chalcones had significant inhibition against α-amylase as well as α-glucosidase that were comparable to or even stronger than standard inhibitors. This suggested that such compounds could be potential candidates for the discovery of new anti-diabetic remedies in the years to come.

10.
Int J Biol Macromol ; 242(Pt 2): 124607, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37116839

ABSTRACT

In this study, silver-immobilized graphene oxide/chitosan (AGC/CTS) membranes were assembled by the solvent evaporation method, wherein Curcuma longa extract was used to synthesize silver-immobilized graphene oxide (AGC) nanocomposite. The characterization results showed that the AGC was successfully synthesized with AgNPs distributed quite evenly on GO sheets. The as-prepared AGC also exhibited high antibacterial activity and low cytotoxicity towards normal cell lines compared to human epithelial carcinoma cell lines. Besides, the fabrication of AGC/CTS membranes was additionally assessed with different AGC ratios and thicknesses. The results revealed the membrane containing 3 wt% of AGC with great hygroscopicity and elastic modulus of 27.03 ± 3.07 MPa. The samples also performed excellent bactericidal capability, along with good mechanical properties for banana preservation. Therewithal, the membrane-coated bananas were also elucidated to ripen at slower paces and less damage, with no appearance of patches of mold on the banana peel surface, eventually prolonging the shelf life of bananas up to 10 days as compared to the non-coated ones. The aforesaid results confirm the potential application of the AGC/CTS membrane as a safe and alternative fruit preservation agent in the food industry.


Subject(s)
Chitosan , Graphite , Metal Nanoparticles , Musa , Nanocomposites , Humans , Silver/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
11.
Beilstein J Nanotechnol ; 13: 528-537, 2022.
Article in English | MEDLINE | ID: mdl-35812249

ABSTRACT

Non-platinum electrodes for photoelectric devices are challenging and attractive to the scientific community. A thin film of molybdenum disulfide (MoS2) was prepared on substrates coated with fluorine-doped tin oxide (FTO) to substitute the platinum counter electrode (CE) for dye-sensitized solar cells (DSSCs). Herein, we synthesized layered and honeycomb-like MoS2 thin films via the cyclic voltammetry (CV) route. Thickness and morphology of the MoS2 thin films were controlled via the concentration of precursor solution. The obtained results showed that MoS2 thin films formed at a low precursor concentration had a layered morphology while a honeycomb-like MoS2 thin film was formed at a high precursor concentration. Both types of MoS2 thin film were composed of 1T and 2H structures and exhibited excellent electrocatalytic activity for the I3 -/I- redox couple. DSSCs assembled using these MoS2 CEs showed a maximal power conversion efficiency of 7.33%. The short-circuit value reached 16.3 mA·cm-2, which was higher than that of a conventional Pt/FTO CE (15.3 mA·cm-2). This work reports for the first time the possibility to obtain a honeycomb-like MoS2 thin film morphology by the CV method and investigates the effect of film structure on the electrocatalytic activity and photovoltaic performance of CEs for DSSC application.

12.
PLoS One ; 17(6): e0269789, 2022.
Article in English | MEDLINE | ID: mdl-35696374

ABSTRACT

Pesticide residue in food, especially in vegetables, is one of the important parameters to assess food safety. This study evaluates the pesticide use in vegetables from two provinces in Central Vietnamand and present data on pesticides detected in vegetables sampled from the sites. The potential health risk associated with the contamination of four commonly used pesticides in different vegetables is also discussed. Both household surveys and monitoring campaigns were conducted. The survey showed that improper pesticide application, storage, and waste disposal prevailed at the study sites. Only 20% of the respondent were aware of pesticide toxicity. As a result, pesticides were detected in 81% out of 290 vegetable samples collected at harvesting time. Up to 23% of samples had pesticide residues above the Maximum Residue Limit values. The highest total pesticide concentration quantified in vegetables in Thua Thien Hue was 11.9 mg/kg (green onions), and in Quang Binh was 38.6 mg/kg (mustard greens). Median residue levels of individual pesticides in vegetables ranged from 0.007 to 0.037 mg/kg. Among the ten target pesticides, cypermethrin, difenoconazole, and fenobucarb were detected at the highest frequencies (72%, 41%, and 37%, respectively). Pesticide residues varied between seasons at both study provinces. Pesticide contamination in the wet season was significantly higher than in the dry season. This study also discovered a potential health risk associated with fipronil residues in vegetables in Thua Thien Hue province. The paper provides recommendations for mitigation measures (both technological and social) in reducing potential health risks linked to pesticide use in vegetables in the region.


Subject(s)
Pesticide Residues , Pesticides , Food Contamination/analysis , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Vegetables/chemistry , Vietnam
13.
Des Monomers Polym ; 25(1): 136-147, 2022.
Article in English | MEDLINE | ID: mdl-35693727

ABSTRACT

Eight polythiophene derivatives containing pyrazoline side groups were synthesized by a chemical oxidative coupling polymerization using FeCl3. The crystal structures of four monomers were determined which confirm the almost perpendicular orientation of the thiophene and pyrazoline rings, while the other substituents are more coplanar. Analyses of IR, 1H-NMR, Raman and UV-Vis spectra demonstrated that the suggested polymerization was successful to generate the synthesized polythiophenes with the expected structures. The morphology of the synthesized polythiophenes was studied by SEM. The different substituents attached to the 1- and 3-positions of the pyrazoline side chain led to differences in optical properties, electrical conductivity, and thermal stability of the synthesized polythiophenes. By adding a pyrazoline side chain to polythiophenes, some polymers achieve good solubility, electrical conductivity of about 1.3 × 10-6 S/cm, high fluorescence intensity (above 40,000 a.u.) at 505-550 nm and thermal stability up to 590°C in the air.

14.
Data Brief ; 42: 108268, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35620239

ABSTRACT

This paper compiles the data associated with a research article published in STOTEN [1]. The data set represents figures, tables, and images illustrating the temporal and spatial distribution of land use and flood dynamics from 2000 to 2020 in the Vietnamese Mekong Delta (VMD). The MODIS imageries were freely accessed online via the NASA website [2] and processed to land use and flood maps based on the algorithms by Sakamoto et al. [3,4]. The MODIS products show a high validation with statistical data and radar satellites [1]. The datasets of flood map and land use, therefore, are available to scientists, engineers, and policy-makers in agricultural management associated with flood management in the VMD. They could be used for policy settings, household livelihood assessment as well as other economic analyses for the VMD region due to the change of land use and flooding dynamics.

15.
J Water Health ; 20(3): 491-504, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35350002

ABSTRACT

Water quality for the surface water along the Saigon River in Ho Chi Minh City was assessed for four groups of water samples collected at the agricultural, industrial, residential, and less impacted areas. A variety of parameters indicating water quality including physicochemical parameters, nutrients, heavy metals, and antibiotic residues were measured for both the rainy and dry seasons, two main tropical seasons in HCM City using the standard methods. The results showed that the river water in the rainy season was detected with significantly higher values of turbidity, BOD5, PO4-P, NH4-N, NO3-N; and lower values of pH, temperature, conductivity, DO, salinity, Cu, Zn, As, Ni, Hg compared to that in the dry season. Sulfamethoxazole and trimethoprim were highly detected in the industrial areas compared to the agricultural and residential areas. Multivariate analyses suggested that the industrial and residential activities were more important contributors to the pollution of the Saigon River than the agricultural activities in HCM City.


Subject(s)
Rivers , Water Quality , Anthropogenic Effects , Cities , Environmental Monitoring , Rivers/chemistry
16.
Langmuir ; 38(13): 4138-4146, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35324210

ABSTRACT

Nitric oxide (NO) removal by photocatalytic oxidation over g-C3N4 has achieved more efficient results. However, there is a concern about the high NO-to-NO2 conversion yield of products, which is not suitable for the photocatalytic NO reaction. In this study, we modify g-C3N4 by WO3 nanoplates for the first time for photocatalytic NO oxidation over a WO3/g-C3N4 composite to enhance the green product selectivity under atmospheric conditions. The results indicate that the photocatalytic efficiency for NO removal by the WO3/g-C3N4 composite is drastically improved and achieves 52.5%, which is approximately 2.1 times higher than that of pure g-C3N4. Significantly, the green product (NO3-) selectivity of the WO3/g-C3N4 composite is 8.7 times higher than that of pure g-C3N4, and the selectivity remained high even after five cycles of photocatalytic tests. We also conclude that the enhanced green product selectivity of photocatalytic NO oxidation by the WO3/g-C3N4 composite is due to the separation and acceleration of the photogenerated charges of the WO3/g-C3N4 S-scheme heterojunction.

17.
Front Public Health ; 10: 795470, 2022.
Article in English | MEDLINE | ID: mdl-35223733

ABSTRACT

BACKGROUND: Approximately 1. 07 million people in Vietnam are infected with hepatitis C virus (HCV). To address this epidemic, the South East Asian Research Collaborative in Hepatitis (SEARCH) launched a 600-patient cohort study and two clinical trials, both investigating shortened treatment strategies for chronic HCV infection with direct-acting antiviral drugs. We conducted ethnographic research with a subset of trial participants and found that the majority were aware of HCV infection and its implications and were motivated to seek treatment. However, people who inject drugs (PWID), and other groups at risk for HCV were under-represented, although injecting drug use is associated with high rates of HCV. MATERIAL AND METHODS: We designed a community-based participatory research (CBPR) study to engage in dialogues surrounding HCV and other community-prioritized health issues with underserved groups at risk for HCV in Ho Chi Minh City. The project consists of three phases: situation analysis, CBPR implementation, and dissemination. In this paper, we describe the results of the first phase (i.e., the situation analysis) in which we conducted desk research and organized stakeholder mapping meetings with representatives from local non-government and community-based organizations where we used participatory research methods to identify and analyze key stakeholders working with underserved populations. RESULTS: Twenty six institutions or groups working with the key underserved populations were identified. Insights about the challenges and dynamics of underserved communities were also gathered. Two working groups made up of representatives from the NGO and CBO level were formed. DISCUSSION: Using the information provided by local key stakeholders to shape the project has helped us to build solid relationships, give the groups a sense of ownership from the early stages, and made the project more context specific. These steps are not only important preliminary steps for participatory studies but also for other research that takes place within the communities.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Antiviral Agents/therapeutic use , Community-Based Participatory Research , Hepacivirus , Hepatitis C/epidemiology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Humans , Vietnam/epidemiology
18.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209056

ABSTRACT

Carrageenan is an anionic sulfated polysaccharide that accounts for a high content of red seaweed Eucheuma gelatinae. This paper focused on the extraction, optimization, and evaluation of antioxidant activity, rheology characteristics, and physic-chemistry characterization of ß-carrageenan from Eucheuma gelatinae. The extraction and the optimization of ß-carrageenan were by the maceration-stirred method and the experimental model of Box-Behken. Antioxidant activity was evaluated to be the total antioxidant activity and reducing power activity. The rheology characteristics of carrageenan were measured to be gel strength and viscosity. Physic-chemistry characterization was determined, including the molecular weight, sugar composition, function groups, and crystal structure, through GCP, GC-FID, FTIR, and XRD. The results showed that carrageenan possessed antioxidant activity, had intrinsic viscosity and gel strength, corresponding to 263.02 cps and 487.5 g/cm2, respectively. Antioxidant carrageenan is composed of rhamnose, mannose, glucose, fucose, and xylose, with two molecular weight fractions of 2.635 × 106 and 2.58 × 106 g/mol, respectively. Antioxidant carrageenan did not exist in the crystal. The optimization condition of antioxidant carrageenan extraction was done at 82.35 °C for 115.35 min with a solvent-to-algae ratio of 36.42 (v/w). At the optimization condition, the extraction efficiency of carrageenan was predicted to be 87.56 ± 5.61 (%), the total antioxidant activity and reducing power activity were predicted to 71.95 ± 5.32 (mg ascorbic acid equivalent/g DW) and 89.84 ± 5.84 (mg FeSO4 equivalent/g DW), respectively. Purity carrageenan content got the highest value at 42.68 ± 2.37 (%, DW). Antioxidant carrageenan from Eucheuma gelatinae is of potential use in food and pharmaceuticals.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Rhodophyta/chemistry , Algorithms , Antioxidants/isolation & purification , Carrageenan/isolation & purification , Chemical Fractionation/methods , Chemical Phenomena , Hydrogen-Ion Concentration , Models, Chemical , Rheology
19.
Sci Rep ; 12(1): 1287, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079072

ABSTRACT

Constructing a large biological model is a difficult, error-prone process. Small errors in writing a part of the model cascade to the system level and their sources are difficult to trace back. In this paper we extend a recent approach based on Event-B, a state-based formal method with refinement as its central ingredient, allowing us to validate for model consistency step-by-step in an automated way. We demonstrate this approach on a model of the heat shock response in eukaryotes and its scalability on a model of the [Formula: see text] signaling pathway. All consistency properties of the model were proved automatically with computer support.

20.
Sci Total Environ ; 813: 151918, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34838549

ABSTRACT

This paper presents the first attempt to capture a comprehensive spatial view of land use change in the Vietnamese Mekong Delta (VMD) for a long period, i.e., from 2000 to 2020. It is aimed at monitoring holistically the land use change and flooding situation in the region, addressing the reasons for land use change, and assessing the impacts of land use change on hydraulic aspects and farmer livelihoods during the last 21 years. MODIS products, in particular, are used to study the dynamics of land use and floods after demonstrating high validation with statistical data and radar satellites, with R2 = 0.96 and R2 ≥ 0.97 for land use and flood maps, respectively. The results show that rice cultivation is the most dominant land use type, accounting for 40% to 46% of the delta area, while aquaculture accounts for 10% to 22%, respectively. The total rice cultivation area increased from 3764 thousand hectares (thous. ha) in 2001 to 4343 thous. ha in 2015 based on the intensive development of triple rice cropping in the upper zone, then decreased to 3963 thous. ha in 2020. In contrast, aquaculture areas are farmed mainly in the coastal area and remained relatively steady, increasing slightly from 619 thous. ha in 2001 to 856 thous. ha in 2020. The massive construction of dikes for triple rice cropping in the upper zone appears to cause a significant impact on the annual flooding regime. Land use policies have influenced the changes in land use patterns, flooding situations, and the livelihoods of local farmers.


Subject(s)
Oryza , Remote Sensing Technology , Agriculture , Aquaculture , Farmers , Floods , Humans , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL